Anodal transcranial direct current stimulation does not affect 100-meter event performance in sprinters
Abstract
Background: During the 100-m event, the maximal sprint velocity and the mean power output developed over 100 m strongly relate to 100-m performance. In this sense, the anodal transcranial direct current stimulation (tDCS) may positively affect sprint velocity and power output. Thus, this study analyzed the effects of tDCS on sprint performance in sprinting athletes. Methods: Eight sprinters completed a doubleblind crossover design: anodal tDCS and sham conditions. The stimulus was applied over the motor cortex (MC) for 20 minutes using a 2mA current intensity in the anodal tDCS condition. Immediately after tDCS sessions, sprinters performed the one maximum field 100-m performance. The mean velocity was measured between 40 and 70 meters [40-70m], and the time during the 100-m event. Results: The results did not reveal significant differences between conditions for the mean velocity at 40-70 m (P = 0.37) and time during the 100-m event (P = 0.47). During the 100-m event, two sprinters in the sham and two more sprints in the anodal tDCS showed a lower time reached than baseline. Conclusion: Anodal tDCS does not affect professional sprinters' sprinting performance. Furthermore, individual responses do not support a possible beneficial effect of anodal tDCS across all sprinters, only in some athletes.
Keywords
References
References
Alix-Fages, C., Garcia-Ramos, A., Romero-Arenas, S., Nadal, G. C., Jerez-Martinez, A., ColomerPoveda, D., & Marquez, G. (2021). Transcranial Direct Current Stimulation Does Not Affect Sprint
Performance or the Horizontal Force-Velocity Profile. Res Q Exerc Sport, 1-9.
doi:10.1080/02701367.2021.1893260
Angius, L., Hopker, J., & Mauger, A. R. (2017). The Ergogenic Effects of Transcranial Direct Current
Stimulation on Exercise Performance. Front Physiol, 8, 90. doi:10.3389/fphys.2017.00090
Angius, L., Pascual-Leone, A., & Santarnecchi, E. (2018). Brain stimulation and physical performance. Prog
Brain Res, 240, 317-339. doi:10.1016/bs.pbr.2018.07.010
Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., . . . Woods, A. J. (2016). Safety of
Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul, 9(5), 641-661.
doi:10.1016/j.brs.2016.06.004
Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., . . . Cohen, L. G. (2017). Effects of
tDCS on motor learning and memory formation: A consensus and critical position paper. Clin
Neurophysiol, 128(4), 589-603. doi:10.1016/j.clinph.2017.01.004
Carlsen, A. N., Eagles, J. S., & MacKinnon, C. D. (2015). Transcranial direct current stimulation over the
supplementary motor area modulates the preparatory activation level in the human motor system.
Behav Brain Res, 279, 68-75. doi:10.1016/j.bbr.2014.11.009
Chen, C. H., Chen, Y. C., Jiang, R. S., Lo, L. Y., Wang, I. L., & Chiu, C. H. (2021). Transcranial Direct Current
Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. Int J
Environ Res Public Health, 18(13). doi:10.3390/ijerph18136967
Codella, R., Alongi, R., Filipas, L., & Luzi, L. (2021). Ergogenic Effects of Bihemispheric Transcranial Direct
Current Stimulation on Fitness: a Randomized Cross-over Trial. Int J Sports Med, 42(1), 66-73.
doi:10.1055/a-1198-8525
Davis, N. J. (2013). Neurodoping: brain stimulation as a performance-enhancing measure. Sports Med,
43(8), 649-653. doi:10.1007/s40279-013-0027-z
Edwards, D. J., Cortes, M., Wortman-Jutt, S., Putrino, D., Bikson, M., Thickbroom, G., & Pascual-Leone, A.
(2017). Transcranial Direct Current Stimulation and Sports Performance. Front Hum Neurosci, 11,
243. doi:10.3389/fnhum.2017.00243
Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for doubleblind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol, 117(4), 845-850.
doi:10.1016/j.clinph.2005.12.003
Grospretre, S., Grandperrin, Y., Nicolier, M., Gimenez, P., Vidal, C., Tio, G., . . . Bennabi, D. (2021). Effect of
transcranial direct current stimulation on the psychomotor, cognitive, and motor performances of
power athletes. Sci Rep, 11(1), 9731. doi:10.1038/s41598-021-89159-7
Healy, R., Kenny, I. C., & Harrison, A. J. (2022). Profiling elite male 100-m sprint performance: The role of
maximum velocity and relative acceleration. J Sport Health Sci, 11(1), 75-84.
doi:10.1016/j.jshs.2019.10.002
Herwig, U., Satrapi, P., & Schonfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for
positioning of transcranial magnetic stimulation. Brain Topogr, 16(2), 95-99.
doi:10.1023/b:brat.0000006333.93597.9d
Hopkins, W. G. (2004). How to interpret changes in an athletic performance test. Sportscience, 8, 1-7.
Lattari et al. 2025, Vol. 15, e110042
10
Hopkins, W. G., Hawley, J. A., & Burke, L. M. (1999). Design and analysis of research on sport performance
enhancement. Med Sci Sports Exerc, 31(3), 472-485. doi:10.1097/00005768-199903000-00018
Jamil, A., Batsikadze, G., Kuo, H. I., Labruna, L., Hasan, A., Paulus, W., & Nitsche, M. A. (2017). Systematic
evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by
transcranial direct current stimulation. J Physiol, 595(4), 1273-1288. doi:10.1113/JP272738
Karabanov, A., Ziemann, U., Hamada, M., George, M. S., Quartarone, A., Classen, J., . . . Siebner, H. R.
(2015). Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Noninvasive
Transcranial Brain Stimulation. Brain Stimul, 8(5), 993-1006. doi:10.1016/j.brs.2015.06.017
Lattari, E., Campos, C., Lamego, M. K., Legey, S., Neto, G. M., Rocha, N. B., . . . Machado, S. (2020). Can
Transcranial Direct Current Stimulation Improve Muscle Power in Individuals With Advanced
Weight-Training Experience? J Strength Cond Res, 34(1), 97-103.
doi:10.1519/JSC.0000000000001956
Morris, C. G., Weber, J. A., & Netto, K. J. (2022). Relationship Between Mechanical Effectiveness in Sprint
Running and Force-Velocity Characteristics of a Countermovement Jump in Australian Rules
Football Athletes. J Strength Cond Res, 36(3), e59-e65. doi:10.1519/JSC.0000000000003583
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak
transcranial direct current stimulation. J Physiol, 527 Pt 3, 633-639. doi:10.1111/j.1469-
7793.2000.t01-1-00633.x
Porrini, M., & Del Bo, C. (2016). Ergogenic Aids and Supplements. Front Horm Res, 47, 128-152.
doi:10.1159/000445176
Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct
current stimulation. Curr Opin Neurol, 24(6), 590-596. doi:10.1097/WCO.0b013e32834c3db0
Shyamali Kaushalya, F., Romero-Arenas, S., Garcia-Ramos, A., Colomer-Poveda, D., & Marquez, G. (2022).
Acute effects of transcranial direct current stimulation on cycling and running performance. A
systematic review and meta-analysis. Eur J Sport Sci, 22(2), 113-125.
doi:10.1080/17461391.2020.1856933
Slawinski, J., Termoz, N., Rabita, G., Guilhem, G., Dorel, S., Morin, J. B., & Samozino, P. (2017). How 100-m
event analyses improve our understanding of world-class men's and women's sprint performance.
Scand J Med Sci Sports, 27(1), 45-54. doi:10.1111/sms.12627
Submitted date:
12/05/2024
Accepted date:
07/17/2025