Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942007000300007
Brazilian Journal of Anesthesiology
Scientific Article

Influência do lítio no bloqueio neuromuscular produzido pelo atracúrio e pelo cisatracúrio: estudo em preparações nervo frênico-diafragma de rato

Influence of lithium on the neuromuscular blockade produced by atracurium and cisatracurium: study on rat phrenic nerve-diaphragm preparations

Samanta Cristina Antoniassi Fernandes; Angélica de Fátima de Assunção Braga; Franklin Sarmento da Silva Braga; Yolanda Christina S. Loyola; Silmara Rodrigues de Souza; Caroline Coutinho de Barcelos

Downloads: 0
Views: 1068

Resumo

JUSTIFICATIVA E OBJETIVOS: O lítio, fármaco amplamente utilizado nos distúrbios bipolares, pode interagir com os bloqueadores neuromusculares. Os mecanismos para explicar os seus efeitos na transmissão neuromuscular e a interação com bloqueadores neuromusculares são controversos. O objetivo deste trabalho foi avaliar, em diafragma de rato, os efeitos do lítio sobre a resposta muscular à estimulação indireta e a possível interação com os bloqueadores neuromusculares. MÉTODO: Utilizaram-se ratos com peso entre 250g e 300g, sacrificados sob anestesia com uretana. A preparação nervo frênico-diafragma foi montada de acordo com a técnica descrita por Bulbring. O diafragma foi mantido sob tensão, ligado a um transdutor isométrico e submetido à estimulação indireta de 0,1 Hz de freqüência. As contrações do diafragma foram registradas em fisiógrafo. Da análise da amplitude das respostas musculares avaliaram-se: os efeitos dos fármacos: lítio (1,5 mg.mL-1); atracúrio (20 µg.mL-1) e cisatracúrio (3 µg.mL-1) empregados isoladamente; da associação lítio-bloqueadores neuromusculares; e do lítio no bloqueio neuromuscular produzido pelo atracúrio (35 µg.mL-1) e cisatracúrio (5 µg.mL-1). Os efeitos foram avaliados antes e 45 minutos após a adição dos fármacos. Também foram estudados os efeitos do lítio nos potenciais de membrana (PM) e potenciais de placa terminal em miniatura (PPTM). RESULTADOS: O lítio isoladamente não alterou a amplitude das respostas musculares, mas diminuiu significativamente o bloqueio neuromuscular produzido pelo atracúrio e cisatracúrio. Não alterou o PM e ocasionou aumento inicial da freqüência dos PPTM. CONCLUSÕES: O lítio empregado isoladamente não comprometeu a transmissão neuromuscular e aumentou a resistência ao efeito do atracúrio e cisatracúrio. Não mostrou ação sobre a fibra muscular, sendo que as alterações nos potenciais de placa terminal em miniatura evidenciaram ação pré-sináptica.

Palavras-chave

ANIMAIS, Estabilizadores do humor, Bloqueadores neuromusculares, não despolarizantes

Abstract

BACKGROUND AND OBJECTIVES: Lithium is widely used for the treatment of bipolar disorders and can interact with neuromuscular blockers. There is a controversy about the mechanisms by which it affects neuromuscular transmission and its interaction with neuromuscular blockers. The objective of this study was to evaluate, on the rat diaphragm, the effects of lithium on the muscular response and indirect stimulation, and the possible interaction with neuromuscular blockers. METHODS: Rats weighing between 250 and 300 g were sacrificed under urethane anesthesia. The phrenic nerve-diaphragm preparation was assembled according to the Bulbring technique. The diaphragm was kept under tension, connected to an isometric transducer, and submitted to indirect stimulation with a frequency of 0.1 Hz. The contractions of the diaphragm were registered on a physiograph. The analysis of the amplitude of the muscular responses evaluated: the effects of the isolated drugs: lithium (1.5 mg.mL-1); atracurium (20 µg.mL-1), and cisatracurium (3 µg.mL-1); the lithium-neuromuscular blockers association; and the effects of lithium on the neuromuscular blockade produced by atracurium (35 µg.mL-1) and cisatracurium (5 µg.mL-1). The effects were evaluated before and 45 minutes after the addition of the drugs. The effects of lithium on membrane potentials (MP) and miniature end-plate potentials (MEPP) were also evaluated. RESULTS: Lithium by itself did not change the amplitude of the muscular responses, but it decreased significantly the neuromuscular blockade produced by atracurium and cisatracurium. It did not change MP and caused an initial increase in MEPP. CONCLUSIONS: Lithium by itself did not compromise neuromuscular transmission and increased the resistance to the effects of atracurium and cisatracurium. It did not show any action on the muscle fiber, and the changes in miniature end-plate potentials indicated pre-synaptic action.

Keywords

ANIMALS, MOOD STABILIZERS, NEUROMUSCULAR BLOCKERS, Nondepolarizing

References

Stahl SM. Psicofarmacologia, Base Neurocientífica e Aplicações Práticas. 2002:93-287.

Abdel-Zaher AO. The myoneural effects of lithium chloride on the nerve-muscle preparations of rats. Role of adenosine triphosphate-sensitive potassium channels. Pharmacol Res. 2000;41:163-178.

Vizi ES, Illes P, Ronai A. Effect of lithium on acetylcholine release and synthesis. Neuropharmacology. 1972;11:521-530.

Borden H, Clarke MT, Katz H. The use of pancuronium bromide in patients receiving lithium carbonate. Can Anaesth Soc J. 1974;21(^s79-82).

Hill GE, Wong KC, Hodges MR. Lithium carbonate and neuromuscular blocking agents. Anesthesiology. 1977;46:122-126.

Saarnivaara L, Ertama P. Interactions between lithium/rubidium and six muscle relaxants. A study on the rat phrenic nerve-hemidiaphragm preparation. Anaesthesist. 1992;41:760-764.

Waud BE, Farrell L, Waud DR. Lithium and neuromuscular transmission. Anesth Analg. 1982;61:399-402.

Bulbring E. Observation on the isolated phrenic nerve-diaphragm preparation of the rat. Br J Pharmacol. 1946;1:38-61.

Amdisen A. Lithium and drug interactions. Drugs. 1982;24:133-139.

Branisteanu DD, Volle RL. Modification by lithium of transmitter release at the neuromuscular junction of the frog. J Pharmacol Exp Ther. 1975;194:362-372.

Havdala HS, Borison RL, Diamond BI. Potential hazards and applications of lithium in anesthesiology. Anesthesiology. 1979;50:534-537.

Tardelli MA. Função Neuromuscular: Bloqueio, Antagonismo e Monitorização. Anestesiologia SAESP. 2001:217-244.

Kelly JS. Antagonism between Na+ and Ca2+ at the neuromuscular junction. Nature. 1965;205:296-297.

Kelly JS. The antagonism of Ca2+ by Na+ and other monovalent ions at the frog neuromuscular junction. J Exp Physiol. 1968;53:239-249.

Tarnopolsky MA, Hicks A, Winegard K. The effects of lithium on muscle contractile function in humans. Muscle Nerve. 1996;19:311-318.

Post RL, Merritt CR, Kinsolving CR. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960;235:1796-1802.

Wespi H. Active transport and passive fluxes of K, Na and Li in mammalian non-myelinated nerve fibres. Pfluegers Arch. ;1969(306):262-280.

Reimherr FW, Hodges MR, Hill GE, Wong KC. Prolongation of muscle relaxant effects by lithium carbonate. Am J Psychiatry. 1977;134:205-206.

Smith JS, Coronado R, Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986;88:573-588.

Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988;25:729-749.

Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991;261:1675-1686.

Carmody JJ, Gage PW. Lithium stimulates secretion of acetylcholine in the absence of extracellular calcium. Brain Res. 1973;50:476-479.

Crawford AC. Lithium ions and the release of transmitter at the frog neuromuscular junction. J Physiol. 1975;246:109-142.

Hill GE, Wong KC, Hodges MR. Potentiation of succinylcholine neuromuscular blockade by lithium carbonate. Anesthesiology. 1976;44:439-442.

Pestronk A, Drachman DB. Mechanism of action of lithium on acetylcholine receptor metabolism in skeletal muscle. Brain Res. 1987;412:302-310.

Dunham ET, Glynn IM. Adenosine triphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961;156:274-293.

5dd836fb0e8825b74413f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections