Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942005000100013
Brazilian Journal of Anesthesiology
Review Article

Imobilidade: uma ação essencial dos anestésicos inalatórios

Immobility: essential inhalational anesthetics action

Leonardo Teixeira Domingues Duarte; Renato Ângelo Saraiva

Downloads: 0
Views: 935

Resumo

JUSTIFICATIVA E OBJETIVOS: A imobilidade é uma característica essencial da anestesia geral e que deve ser buscada e mantida durante todo o ato anestésico. A potência anestésica, chamada Concentração Alveolar Mínima (CAM), é a expressão da inibição dos movimentos em resposta a estímulos nociceptivos. Entretanto, apesar da medula espinhal ser reconhecida como principal mediadora da imobilidade cirúrgica, os mecanismos celulares e subcelulares da ação dos anestésicos inalatórios para produzirem imobilidade não são, ainda, totalmente conhecidos. Tendo em vista o grande avanço na pesquisa dos mecanismos de ação dos anestésicos inalatórios e a resultante grande quantidade de informações, essa revisão tem como objetivo avaliar criticamente os estudos clínicos e experimentais realizados para identificação dos mecanismos e locais de ação dos anestésicos inalatórios para produção de imobilidade em resposta a estímulos nociceptivos. CONTEÚDO: Os mecanismos de ação dos anestésicos inalatórios no SNC podem ser divididos em três níveis: macroscópico, microscópico e molecular. No aspecto macroscópico, estudos comportamentais mostraram ser a medula espinhal o principal local da ação anestésica para promover imobilidade em resposta à estimulação dolorosa. No nível celular, a excitabilidade dos motoneurônios, neurônios nociceptivos e a transmissão sináptica estão, todos, envolvidos na ação dos anestésicos inalatórios. Sob o ponto de vista molecular, diversos receptores são afetados pelos anestésicos, mas poucos devem mediar diretamente a ação anestésica. Entre estes, destacam-se os receptores de glicina, NMDA de glutamato, 5-HT2A, e canais de sódio voltagem-dependentes. CONCLUSÕES: A imobilidade produzida pelos anestésicos inalatórios é mediada, principalmente, através de uma ação sobre a medula espinhal. Esse efeito ocorre pela ação anestésica sobre a excitabilidade dos neurônios motores espinhais, mas também sobre neurônios e interneurônios nociceptivos do corno posterior da medula. A ação sobre os receptores específicos exerce efeito sobre a transmissão sináptica desses neurônios.

Palavras-chave

ANESTESIA, Geral, MONITORIZAÇÃO

Abstract

BACKGROUND AND OBJECTIVES: Immobility is an essential component of general anesthesia and should be looked for and maintained throughout anesthesia. Anesthetic potency, called Minimum Alveolar Concentration (MAC), results from the inhibition of movement response to noxious stimulation. However, although spinal cord is recognized as the primary mediator of surgical immobility, cellular and subcelular mechanisms of action of inhaled anesthetics to produce immobility are not yet totally known. Considering major research advances on mechanisms of action of inhaled anesthetics and resulting wide variety of information, this review aimed at critically evaluating clinical and experimental studies performed to identify sites of action and mechanisms of inhaled anesthetics to promote immobility in response to noxious stimulations. CONTENTS: Complex mechanisms of action of inhaled anesthetics on central nervous system may be divided into three levels: macroscopic, microscopic, and molecular. Macroscopically, behavioral studies have shown spinal cord to be the primary anesthetic site of action to promote immobility in response to noxious stimulations. At cellular level, excitability of motor neurons, nociceptive neurons and synaptic transmission are involved in the anesthetic action. At molecular level, several receptors are affected by inhaled anesthetics, but only a few may directly mediate anesthetic action, among them: glycine, glutamate AMPA and 5-HT2A receptors, in addition to voltage-gated sodium channels. CONCLUSIONS: Inhaled anesthetics-induced immobility is primarily mediated by an action on the spinal cord, as a consequence of anesthetic action upon motor neurons excitability and upon nociceptive neurons of the spinal cord dorsal horn. Actions on specific receptors have an effect on their synaptic transmission.

Keywords

ANESTHESIA, General, MONITORING

References

Kissin I. General anesthetic action: an obsolete notion. Anesth Analg. 1993;76:215-218.

Antognini JF, Carstens E. In vivo characterization of clinical anaesthesia and its components. Br J Anaesth. 2002;89:156-166.

Rampil IJ, Laster MJ. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology. 1992;77:920-925.

Dwyer RC, Rampil IJ, Eger EI II. The electroencephalogram does not predict depth of isoflurane anesthesia. Anesthesiology. 1994;81:403-409.

Kandel L, Chortkoff BS, Sonner J. Nonanesthetics can suppress learning. Anesth Analg. 1996;82:321-326.

Koblin DD, Chortkoff BS, Laster MJ. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994;79:1043-1048.

Sonner JM, Li J, Eger EI 2nd. Desflurane and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane suppress learning by a mechanism independent of the level of unconditioned stimulation. Anesth Analg. 1998;87:200-205.

Eger EI II, Koblin DD, Harris RA. Hypothesis: inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth Analg. 1997;84:915-918.

Borges M, Antognini JF. Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia. Anesthesiology. 1994;81:1511-1515.

Antognini JF. Movement associated with high cerebral concentrations of isoflurane: no evidence of seizure activity. Can J Anaesth. 1996;43:310-314.

Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology. 1994;80:606-610.

Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707-712.

Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244-1249.

Collins JG, Kendig JJ, Mason P. Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends Neurosci. 1995;18:549-553.

de Jong RH, Robles R, Heavner JE. Suppression of impulse transmission in the cat's dorsal horn by inhalation anesthetics. Anesthesiology. 1970;32:440-445.

Jinks SL, Martin JT, Carstens E. Peri-MAC depression of a nociceptive withdrawal reflex is accompanied by reduced dorsal horn activity with halothane but not isoflurane. Anesthesiology. 2003;98:1128-1138.

O'Connor TC, Abram SE. Halothane enhances suppression of spinal sensitization by intrathecal morphine in the rat formalin test. Anesthesiology. 1994;81:1277-1283.

O'Connor TC, Abram SE. Inhibition of nociception-induced spinal sensitization by anesthetics agents. Anesthesiology. 1995;82:259-266.

Namiki A, Collins JG, Kitahata LM et al. Effects of halothane on spinal neuronal responses to graded noxious heat stimulation in the cat. Anesthesiology. 1980;53:475-480.

Antognini JF, Carstens E, Tabo E. Effect of differential delivery of isoflurane to head and torso on lumbar dorsal horn activity. Anesthesiology. 1998;88:1055-1061.

Antognini JF, Carstens E. Increasing isoflurane from 0. 9 to 1.1 minimum alveolar concentration minimally affects dorsal horn cell responses to noxious stimulation. Anesthesiology. 1999;90:208-214.

Yamamory Y, Kishikawa K, Collins JG. Halothane effects on low-threshold receptive field size of rat spinal dorsal horn neurons appear to be independent of supraspinal modulatory systems. Brain Res. 1995;702:162-168.

Yanagidani T, Ota K, Collins JG. Complex effects of general anesthesia on sensory processing in the spinal dorsal horn. Brain Res. 1998;812:301-304.

Savola MK, Woodley SJ, Maze M. Isoflurane and an alpha sub 2-adrenoceptor agonist suppress nociceptive neurotransmission in neonatal rat spinal cord. Anesthesiology. 1991;75:489-498.

King BS, Rampil IJ. Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology. 1994;81:1484-1492.

Rampil IJ, King BS. Volatile anesthetics depress spinal motor neurons. Anesthesiology. 1996;85:129-134.

Zhou HH, Mehta M, Leis AA. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology. 1997;86:302-307.

Zhou HH, Jin TT, Qin B. Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anesthesia. Anesthesiology. 1998;88:955-961.

Sonner JM, Antognini JF, Dutton RC. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg. 2003;97:718-740.

Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26:756-763.

Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348:2110-2124.

Franks NP, Lieb WR. Molecular mechanisms of general anaesthesia. Nature. 1982;300:487-493.

Saraiva RA. Mecanismo de ação dos anestésicos inalatórios. Rev Bras Anestesiol. 2002;52:114-123.

Antognini JF, Carstens E. Macroscopic sites of anesthetic action: brain versus spinal cord. Toxicol Lett. 1998;100-101:51-58.

Antognini JF, Kien ND. A method for preferential delivery of volatile anesthetics to the in situ goat brain. Anesthesiology. 1994;80:1148-1154.

Kochs E, Kalkman CJ, Thornton C. Middle latency auditory evoked responses and electroencephalographic derived variables do not predict movement to noxious stimulation during 1 minimum alveolar anesthetic concentration isoflurane/nitrous oxide anesthesia. Anesth Analg. 1999;88:1412-1417.

Schwender D, Conzen P, Klasing S. The effects of anesthesia with increasing end-expiratory concentrations of sevoflurane on midlatency auditory evoked potentials. Anesth Analg. 1995;81:817-822.

Hodgson PS, Liu SS. Epidural lidocaine decreases sevoflurane requirement for adequate depth of anesthesia as measured by the Bispectral Index monitor. Anesthesiology. 2001;94:799-803.

Ropcke H, Rehberg B, Koenen-Bergmann M. Surgical stimulation shifts EEG concentration-response relationship of desflurane. Anesthesiology. 2001;94:390-399.

Kitahata LM, Ghazi-Saidi K, Yamashita M. The depressant effect of halothane and sodium thiopental on the spontaneous and evoked activity of dorsal horn cells: lamina specificity, time course and dose dependence. J Pharmacol Exp Ther. 1975;195:515-521.

Kendig JJ. Spinal cord as a site of anesthetic action. Anesthesiology. 1993;79:1161-1162.

Antognini JF, Wang XW, Carstens E. Isoflurane action in the spinal cord blunts electroencephalographic and thalamic-reticular formation responses to noxious stimulation in goats. Anesthesiology. 2000;92:559-566.

Pereon Y, Bernard JM, Nguyen The Tich S. The effects of desflurane on the nervous system: from spinal cord to muscles. Anesth Analg. 1999;89:490-495.

Costa VV, Saraiva RA. Ação do óxido nitroso no sistema nervoso central. Estudo eletrofisiológico como agente único e como agente coadjuvante. Rev Bras Anestesiol. 2002;52:255-271.

Richards CD. The synaptic basis of general anaesthesia. Eur J Anaesthesiol. 1995;12:5-19.

de Jong RH, Nace RA. Nerve impulse conduction and cutaneous receptor responses during general anesthesia. Anesthesiology. 1967;28:851-855.

Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesth Analg. 2000;93:32-38.

MacIver MB, Tanelian DL. Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology. 1990;72:1022-1030.

Antognini JF, Kien ND. Potency (minimum alveolar anesthetic concentration) of isoflurane is independent of peripheral anesthetic effects. Anesth Analg. 1995;81:69-72.

Jinks S, Antognini JF, Carstens E. Isoflurane can indirectly depress lumbar dorsal horn activity in the goat via action within the brain. Br J Anaesth. 1999;82:244-249.

Freund FG, Martin WE, Hornbein TF. The H-reflex as a measure of anesthetic potency in man. Anesthesiology. 1969;30:642-647.

Friedman Y, King BS, Rampil IJ. Nitrous oxide depresses spinal F waves in rats. Anesthesiology. 1996;85:135-141.

Antognini JF, Carstens E, Buzin V. Isoflurane depresses motoneuron excitability by a direct spinal action: an F-wave study. Anesth Analg. 1999;88:681-685.

Kimura J. The H-Reflex and other Late Responses. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. 1983:379-398.

Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Progr Neurobiol. 1987;28:345-376.

Panayiotopoulos CP, Chroni E. F-waves in clinical neurophysiology: a review, methodological issues and overall value in peripheral neuropathies. Electroencephalogr Clin Neurophysiol. 1996;101:365-374.

Kimura J. The F-wave, Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. 1983:353-377.

Fox JE, Hitchcock ER. F wave size as a monitor of motor neuron excitability: the effect of deafferentiation. J Neurol Neusurg Psychiatry. 1987;50:453-459.

Mercuri B, Wassermann EM, Manganotti P. Cortical modulation of spinal excitability: an F-wave study. Electroencephalogr Clin Neurophysiol. 1996;101:16-24.

Pocock G, Richards CD. Cellular mechanisms in general anesthesia. Br J Anaesth. 1991;66:116-128.

Franks NP, Lieb WR. Which molecular targets are most relevant to general anaesthesia. Toxicol Lett. 1998;100-101:1-8.

Harris RA, Mihic SJ, Dildy-Mayfield JE. Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. FASEB J. 1995;9:1454-1462.

Minami K, Minami M, Harris RA. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharmacol Exp Ther. 1997;281:1136-1143.

Downie DL, Hall AC, Lieb WR. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol. 1996;118:493-502.

Cheng G, Kendig JJ. Pre- and postsynaptic volatile anaesthetic actions on glycinergic transmission to spinal cord motor neurons. Br J Pharmacol. 2002;136:673-684.

Zhang Y, Wu S, Eger EI II. Neither GABA(A) nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth Analg. 2001;92:123-127.

Zhang Y, Laster MJ, Hara K. Glycine receptors mediate part of the immobility produced by inhaled anesthetics. Anesth Analg. 2003;96:97-101.

Cheng G, Kendig JJ. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABA A or glycine receptors. Anesthesiology. 2000;93:1075-1084.

Martin DC, Plagenhoef M, Abraham J. Volatile anesthetics and glutamate activation of N-methyl-D-aspartate receptors. Biochem Pharmacol. 1995;49:809-817.

Hollmann MW, Liu HT, Hoenemann CW. Modulation of NMDA receptor function by ketamine and magnesium. Part II: Interactions with volatile anesthetics. Anesth Analg. 2001;92:1182-1191.

Masaki E, Yamazaki K, Ohno Y. The anesthetic interaction between adenosine triphosphate and N-methyl-D-aspartate receptor antagonists in the rat. Anesth Analg. 2001;92:134-139.

Ishizaki K, Yoshida N, Yoon DM. Intrathecally administered NMDA receptor antagonists reduce the MAC of isoflurane in rats. Can J Anaesth. 1996;43:724-730.

Stabernack C, Sonner JM, Laster M. Spinal NMDA receptors may contribute to the immobilizing action of isoflurane. Anesth Analg. 2003;96:102-107.

Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation: implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293-299.

Zhang Y, Laster MJ, Eger EI II. Blockade of 5-HT2A receptors may mediate or modulate part of the immobility produced by inhaled anesthetics. Anesth Analg. 2003;97:475-479.

Lingamaneni R, Birch ML, Hemmings HC Jr. Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology. 2001;95:1460-1466.

Ratnakumari L, Hemmings HC Jr. Inhibition of presynaptic sodium channels by halothane. Anesthesiology. 1998;88:1043-1054.

Ratnakumari L, Vysotskaya TN, Duch DS. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology. 2000;92:529-541.

Doherty TJ, McDonell WN, Dyson DH. The effect of a 5-hydroxytryptamine antagonist (R51703) on halothane MAC in the dog. J Vet Pharmacol Ther. 1995;18:153-155.

McFarlane C, Warner DS, Todd MM. AMPA receptor competitive antagonism reduces halothane MAC in rats. Anesthesiology. 1992;77:1165-1170.

Ishizaki K, Yoon DM, Yoshida N. Intrathecal administration of N-methyl-D-aspartate receptor antagonist reduces the minimum alveolar anaesthetic concentration of isoflurane in rats. Br J Anaesth. 1995;75:636-638.

Joo DT, Gong D, Sonner JM. Blockade of AMPA receptors and volatile anesthetics: reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology. 2001;94:478-488.

Jones MV, Harrison NL. Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol. 1993;70:1339-1349.

Wong SM, Cheng G, Homanics GE. Enflurane actions on spinal cords from mice that lack the beta3 subunit of the GABA(A) receptor. Anesthesiology. 2001;95:154-164.

Yamakura T, Harris RA. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated íon channels. Comparison with isoflurane and ethanol. Anesthesiology. 2000;93:1095-1101.

Sonner JM, Zhang Y, Stabernack C. GABA(A) receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg. 2003;96:706-712.

Suzuki T, Koyama H, Sugimoto M. The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3 receptors expressed in Xenopus oocytes. Anesthesiology. 2002;96:699-704.

Rampil IJ, Laster MJ, Eger EI II. Antagonism of the 5-HT(3) receptor does not alter isoflurane MAC in rats. Anesthesiology. 2001;95:562-564.

Flood P, Sonner JM, Gong D. Heteromeric nicotinic inhibition by isoflurane does not mediate MAC or loss of righting reflex. Anesthesiology. 2002;97:902-905.

Eger EI II, Zhang Y, Laster M. Acethylcholine receptors do not mediate the immobilization produced by inhaled anesthetics. Anesth Analg. 2002;94:1500-1504.

Harper MH, Winter PM, Johnson BH. Naloxone does not antagonize general anesthesia in the rat. Anesthesiology. 1978;49:3-5.

Smith RA, Wilson M, Miller KW. Naloxone has no effect on nitrous oxide anesthesia. Anesthesiology. 1978;49:6-8.

Bloor BC, Flacke WE. Reduction in halothane anesthetic requirement by clonidine, an alpha-adrenergic agonist. Anesth Analg. 1982;61:741-745.

Aantaa R, Jaakola ML, Kallio A. Reduction of the minimum alveolar concentration of isoflurane by dexmedetomidine. Anesthesiology. 1997;86:1055-1060.

Rabin BC, Reid K, Guo TZ. Sympatholytic and minimum anesthetic concentration-sparing responses are preserved in rats rendered tolerant to the hypnotic and analgesic action of dexmedetomidine, a selective alpha-2 adrenergic agonist. Anesthesiology. 1996;85:565-573.

Eger EI II, Xing Y, Laster MJ. Alpha-2 adrenoreceptors probably do not mediate the immobility produced by inhaled anesthetics. Anesth Analg. 2003;96:1661-1664.

5dd7e2b60e8825ae6013f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections