Imobilidade: uma ação essencial dos anestésicos inalatórios
Immobility: essential inhalational anesthetics action
Leonardo Teixeira Domingues Duarte; Renato Ângelo Saraiva
Resumo
Palavras-chave
Abstract
Keywords
Referências
Kissin I. General anesthetic action: an obsolete notion. Anesth Analg. 1993;76:215-218.
Antognini JF, Carstens E. In vivo characterization of clinical anaesthesia and its components. Br J Anaesth. 2002;89:156-166.
Rampil IJ, Laster MJ. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology. 1992;77:920-925.
Dwyer RC, Rampil IJ, Eger EI II. The electroencephalogram does not predict depth of isoflurane anesthesia. Anesthesiology. 1994;81:403-409.
Kandel L, Chortkoff BS, Sonner J. Nonanesthetics can suppress learning. Anesth Analg. 1996;82:321-326.
Koblin DD, Chortkoff BS, Laster MJ. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994;79:1043-1048.
Sonner JM, Li J, Eger EI 2nd. Desflurane and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane suppress learning by a mechanism independent of the level of unconditioned stimulation. Anesth Analg. 1998;87:200-205.
Eger EI II, Koblin DD, Harris RA. Hypothesis: inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth Analg. 1997;84:915-918.
Borges M, Antognini JF. Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia. Anesthesiology. 1994;81:1511-1515.
Antognini JF. Movement associated with high cerebral concentrations of isoflurane: no evidence of seizure activity. Can J Anaesth. 1996;43:310-314.
Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology. 1994;80:606-610.
Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707-712.
Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244-1249.
Collins JG, Kendig JJ, Mason P. Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends Neurosci. 1995;18:549-553.
de Jong RH, Robles R, Heavner JE. Suppression of impulse transmission in the cat's dorsal horn by inhalation anesthetics. Anesthesiology. 1970;32:440-445.
Jinks SL, Martin JT, Carstens E. Peri-MAC depression of a nociceptive withdrawal reflex is accompanied by reduced dorsal horn activity with halothane but not isoflurane. Anesthesiology. 2003;98:1128-1138.
O'Connor TC, Abram SE. Halothane enhances suppression of spinal sensitization by intrathecal morphine in the rat formalin test. Anesthesiology. 1994;81:1277-1283.
O'Connor TC, Abram SE. Inhibition of nociception-induced spinal sensitization by anesthetics agents. Anesthesiology. 1995;82:259-266.
Namiki A, Collins JG, Kitahata LM et al. Effects of halothane on spinal neuronal responses to graded noxious heat stimulation in the cat. Anesthesiology. 1980;53:475-480.
Antognini JF, Carstens E, Tabo E. Effect of differential delivery of isoflurane to head and torso on lumbar dorsal horn activity. Anesthesiology. 1998;88:1055-1061.
Antognini JF, Carstens E. Increasing isoflurane from 0. 9 to 1.1 minimum alveolar concentration minimally affects dorsal horn cell responses to noxious stimulation. Anesthesiology. 1999;90:208-214.
Yamamory Y, Kishikawa K, Collins JG. Halothane effects on low-threshold receptive field size of rat spinal dorsal horn neurons appear to be independent of supraspinal modulatory systems. Brain Res. 1995;702:162-168.
Yanagidani T, Ota K, Collins JG. Complex effects of general anesthesia on sensory processing in the spinal dorsal horn. Brain Res. 1998;812:301-304.
Savola MK, Woodley SJ, Maze M. Isoflurane and an alpha sub 2-adrenoceptor agonist suppress nociceptive neurotransmission in neonatal rat spinal cord. Anesthesiology. 1991;75:489-498.
King BS, Rampil IJ. Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology. 1994;81:1484-1492.
Rampil IJ, King BS. Volatile anesthetics depress spinal motor neurons. Anesthesiology. 1996;85:129-134.
Zhou HH, Mehta M, Leis AA. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology. 1997;86:302-307.
Zhou HH, Jin TT, Qin B. Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anesthesia. Anesthesiology. 1998;88:955-961.
Sonner JM, Antognini JF, Dutton RC. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg. 2003;97:718-740.
Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26:756-763.
Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348:2110-2124.
Franks NP, Lieb WR. Molecular mechanisms of general anaesthesia. Nature. 1982;300:487-493.
Saraiva RA. Mecanismo de ação dos anestésicos inalatórios. Rev Bras Anestesiol. 2002;52:114-123.
Antognini JF, Carstens E. Macroscopic sites of anesthetic action: brain versus spinal cord. Toxicol Lett. 1998;100-101:51-58.
Antognini JF, Kien ND. A method for preferential delivery of volatile anesthetics to the in situ goat brain. Anesthesiology. 1994;80:1148-1154.
Kochs E, Kalkman CJ, Thornton C. Middle latency auditory evoked responses and electroencephalographic derived variables do not predict movement to noxious stimulation during 1 minimum alveolar anesthetic concentration isoflurane/nitrous oxide anesthesia. Anesth Analg. 1999;88:1412-1417.
Schwender D, Conzen P, Klasing S. The effects of anesthesia with increasing end-expiratory concentrations of sevoflurane on midlatency auditory evoked potentials. Anesth Analg. 1995;81:817-822.
Hodgson PS, Liu SS. Epidural lidocaine decreases sevoflurane requirement for adequate depth of anesthesia as measured by the Bispectral Index monitor. Anesthesiology. 2001;94:799-803.
Ropcke H, Rehberg B, Koenen-Bergmann M. Surgical stimulation shifts EEG concentration-response relationship of desflurane. Anesthesiology. 2001;94:390-399.
Kitahata LM, Ghazi-Saidi K, Yamashita M. The depressant effect of halothane and sodium thiopental on the spontaneous and evoked activity of dorsal horn cells: lamina specificity, time course and dose dependence. J Pharmacol Exp Ther. 1975;195:515-521.
Kendig JJ. Spinal cord as a site of anesthetic action. Anesthesiology. 1993;79:1161-1162.
Antognini JF, Wang XW, Carstens E. Isoflurane action in the spinal cord blunts electroencephalographic and thalamic-reticular formation responses to noxious stimulation in goats. Anesthesiology. 2000;92:559-566.
Pereon Y, Bernard JM, Nguyen The Tich S. The effects of desflurane on the nervous system: from spinal cord to muscles. Anesth Analg. 1999;89:490-495.
Costa VV, Saraiva RA. Ação do óxido nitroso no sistema nervoso central. Estudo eletrofisiológico como agente único e como agente coadjuvante. Rev Bras Anestesiol. 2002;52:255-271.
Richards CD. The synaptic basis of general anaesthesia. Eur J Anaesthesiol. 1995;12:5-19.
de Jong RH, Nace RA. Nerve impulse conduction and cutaneous receptor responses during general anesthesia. Anesthesiology. 1967;28:851-855.
Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesth Analg. 2000;93:32-38.
MacIver MB, Tanelian DL. Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology. 1990;72:1022-1030.
Antognini JF, Kien ND. Potency (minimum alveolar anesthetic concentration) of isoflurane is independent of peripheral anesthetic effects. Anesth Analg. 1995;81:69-72.
Jinks S, Antognini JF, Carstens E. Isoflurane can indirectly depress lumbar dorsal horn activity in the goat via action within the brain. Br J Anaesth. 1999;82:244-249.
Freund FG, Martin WE, Hornbein TF. The H-reflex as a measure of anesthetic potency in man. Anesthesiology. 1969;30:642-647.
Friedman Y, King BS, Rampil IJ. Nitrous oxide depresses spinal F waves in rats. Anesthesiology. 1996;85:135-141.
Antognini JF, Carstens E, Buzin V. Isoflurane depresses motoneuron excitability by a direct spinal action: an F-wave study. Anesth Analg. 1999;88:681-685.
Kimura J. The H-Reflex and other Late Responses. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. 1983:379-398.
Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Progr Neurobiol. 1987;28:345-376.
Panayiotopoulos CP, Chroni E. F-waves in clinical neurophysiology: a review, methodological issues and overall value in peripheral neuropathies. Electroencephalogr Clin Neurophysiol. 1996;101:365-374.
Kimura J. The F-wave, Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. 1983:353-377.
Fox JE, Hitchcock ER. F wave size as a monitor of motor neuron excitability: the effect of deafferentiation. J Neurol Neusurg Psychiatry. 1987;50:453-459.
Mercuri B, Wassermann EM, Manganotti P. Cortical modulation of spinal excitability: an F-wave study. Electroencephalogr Clin Neurophysiol. 1996;101:16-24.
Pocock G, Richards CD. Cellular mechanisms in general anesthesia. Br J Anaesth. 1991;66:116-128.
Franks NP, Lieb WR. Which molecular targets are most relevant to general anaesthesia. Toxicol Lett. 1998;100-101:1-8.
Harris RA, Mihic SJ, Dildy-Mayfield JE. Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. FASEB J. 1995;9:1454-1462.
Minami K, Minami M, Harris RA. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharmacol Exp Ther. 1997;281:1136-1143.
Downie DL, Hall AC, Lieb WR. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol. 1996;118:493-502.
Cheng G, Kendig JJ. Pre- and postsynaptic volatile anaesthetic actions on glycinergic transmission to spinal cord motor neurons. Br J Pharmacol. 2002;136:673-684.
Zhang Y, Wu S, Eger EI II. Neither GABA(A) nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth Analg. 2001;92:123-127.
Zhang Y, Laster MJ, Hara K. Glycine receptors mediate part of the immobility produced by inhaled anesthetics. Anesth Analg. 2003;96:97-101.
Cheng G, Kendig JJ. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABA A or glycine receptors. Anesthesiology. 2000;93:1075-1084.
Martin DC, Plagenhoef M, Abraham J. Volatile anesthetics and glutamate activation of N-methyl-D-aspartate receptors. Biochem Pharmacol. 1995;49:809-817.
Hollmann MW, Liu HT, Hoenemann CW. Modulation of NMDA receptor function by ketamine and magnesium. Part II: Interactions with volatile anesthetics. Anesth Analg. 2001;92:1182-1191.
Masaki E, Yamazaki K, Ohno Y. The anesthetic interaction between adenosine triphosphate and N-methyl-D-aspartate receptor antagonists in the rat. Anesth Analg. 2001;92:134-139.
Ishizaki K, Yoshida N, Yoon DM. Intrathecally administered NMDA receptor antagonists reduce the MAC of isoflurane in rats. Can J Anaesth. 1996;43:724-730.
Stabernack C, Sonner JM, Laster M. Spinal NMDA receptors may contribute to the immobilizing action of isoflurane. Anesth Analg. 2003;96:102-107.
Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation: implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293-299.
Zhang Y, Laster MJ, Eger EI II. Blockade of 5-HT2A receptors may mediate or modulate part of the immobility produced by inhaled anesthetics. Anesth Analg. 2003;97:475-479.
Lingamaneni R, Birch ML, Hemmings HC Jr. Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology. 2001;95:1460-1466.
Ratnakumari L, Hemmings HC Jr. Inhibition of presynaptic sodium channels by halothane. Anesthesiology. 1998;88:1043-1054.
Ratnakumari L, Vysotskaya TN, Duch DS. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology. 2000;92:529-541.
Doherty TJ, McDonell WN, Dyson DH. The effect of a 5-hydroxytryptamine antagonist (R51703) on halothane MAC in the dog. J Vet Pharmacol Ther. 1995;18:153-155.
McFarlane C, Warner DS, Todd MM. AMPA receptor competitive antagonism reduces halothane MAC in rats. Anesthesiology. 1992;77:1165-1170.
Ishizaki K, Yoon DM, Yoshida N. Intrathecal administration of N-methyl-D-aspartate receptor antagonist reduces the minimum alveolar anaesthetic concentration of isoflurane in rats. Br J Anaesth. 1995;75:636-638.
Joo DT, Gong D, Sonner JM. Blockade of AMPA receptors and volatile anesthetics: reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology. 2001;94:478-488.
Jones MV, Harrison NL. Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol. 1993;70:1339-1349.
Wong SM, Cheng G, Homanics GE. Enflurane actions on spinal cords from mice that lack the beta3 subunit of the GABA(A) receptor. Anesthesiology. 2001;95:154-164.
Yamakura T, Harris RA. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated íon channels. Comparison with isoflurane and ethanol. Anesthesiology. 2000;93:1095-1101.
Sonner JM, Zhang Y, Stabernack C. GABA(A) receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg. 2003;96:706-712.
Suzuki T, Koyama H, Sugimoto M. The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3 receptors expressed in Xenopus oocytes. Anesthesiology. 2002;96:699-704.
Rampil IJ, Laster MJ, Eger EI II. Antagonism of the 5-HT(3) receptor does not alter isoflurane MAC in rats. Anesthesiology. 2001;95:562-564.
Flood P, Sonner JM, Gong D. Heteromeric nicotinic inhibition by isoflurane does not mediate MAC or loss of righting reflex. Anesthesiology. 2002;97:902-905.
Eger EI II, Zhang Y, Laster M. Acethylcholine receptors do not mediate the immobilization produced by inhaled anesthetics. Anesth Analg. 2002;94:1500-1504.
Harper MH, Winter PM, Johnson BH. Naloxone does not antagonize general anesthesia in the rat. Anesthesiology. 1978;49:3-5.
Smith RA, Wilson M, Miller KW. Naloxone has no effect on nitrous oxide anesthesia. Anesthesiology. 1978;49:6-8.
Bloor BC, Flacke WE. Reduction in halothane anesthetic requirement by clonidine, an alpha-adrenergic agonist. Anesth Analg. 1982;61:741-745.
Aantaa R, Jaakola ML, Kallio A. Reduction of the minimum alveolar concentration of isoflurane by dexmedetomidine. Anesthesiology. 1997;86:1055-1060.
Rabin BC, Reid K, Guo TZ. Sympatholytic and minimum anesthetic concentration-sparing responses are preserved in rats rendered tolerant to the hypnotic and analgesic action of dexmedetomidine, a selective alpha-2 adrenergic agonist. Anesthesiology. 1996;85:565-573.
Eger EI II, Xing Y, Laster MJ. Alpha-2 adrenoreceptors probably do not mediate the immobility produced by inhaled anesthetics. Anesth Analg. 2003;96:1661-1664.