Acute toxicity of potentially toxic elements on ciliated protozoa from Lake Maracaibo (Venezuela)
Toxicidade aguda de elementos potencialmente tóxicos em protozoários ciliados do Lago de Maracaibo (Venezuela)
Julio César Marín-Leal; Neil José Rincón-Miquilena; Laugeny Chiquinquirá Díaz-Borrego; María Carolina Pire-Sierra
Abstract
Keywords
Resumo
Resumo::
Palavras-chave
Referencias
Abdel-Gawad, S.S., 2006. Toxicity and bioaccumulation of cadmium in the freshwater bivalve
Alayo, M., & Iannacone, J., 2002. Ensayos ecotoxicológicos con petróleo crudo, diésel 2 y diésel 6 con dos subespecies de
Ali, H., & Khan, E., 2018. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs - concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. 2018, 1353-1376.
Amaro, F., Turkewitz, A.P., Martín-González, A., & Gutiérrez, J.C., 2011. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from
American Public Health Association – APHA, 2017. Standard methods for the examination of water and wastewater (23th ed.). Washington: APHA.
Aslam, S., & Yousafzai, A.M., 2017. Chromium toxicity in fish: a review article. J. Entomol. Zool. Stud. 5(3), 1483-1488.
Ávila, H., Gutiérrez, E., Ledo, H., Araujo, M., & Sánquiz, M., 2010. Heavy metals distribution in superficial sediments of Maracaibo Lake (Venezuela). Rev. Tec. Fac. Ing. Univ. Zulia, 33(2), 122-129.
Blanck, H., & Wängberg, S., 1988. Validity of an ecotoxicological test system: short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can. J. Fish. Aquat. Sci. 45(10), 1807-1815.
Borsari, M., 2014. Cadmium: inorganic chemistry. In: Scott, R.A., ed. Encyclopedia of inorganic and bioinorganic chemistry. New York: John Wiley & Sons. p. 56-87.
Bracho, G., Cuador-Gil, J.Q., & Rodríguez-Fernández, R.M., 2016. Calidad del agua y sedimento en el Lago de Maracaibo, estado Zulia. Miner. Geol. 32(1), 1-14.
Cáceres, A., 2012. La Creole Petroleum Corporation en Venezuela: la gran fusión petrolera de los años cuarenta. Debates IESA, 2012(17), 58-61.
Canadian Council of Ministers of the Environment – CCME, 1999. Canadian water quality guidelines for the protection of aquatic life: chromium-hexavalent chromium and trivalent chromium. In: Canadian environmental quality guidelines. Winnipeg: CCME.
Canadian Council of Ministers of the Environment – CCME, 2014. Canadian water quality guidelines for the protection of aquatic life: cadmium. In: Canadian environmental quality guidelines. Winnipeg: CCME.
Castro, F., & Marín, J., 2018. Comparación de la ecotoxicidad por metales pesados sobre bacterias heterótrofas de dos sitios contrastados del Lago de Maracaibo (Venezuela). Rev. Fac. Cienc. Básicas 14, 1-10.
Colina de Vargas, M., & Romero, R., 1992. Mercury determination by cold vapour atomic absorption spectrometry in several biological indicators from Lake Maracaibo, Venezuela. Analyst, 117(3), 645-647. PMid:1580413.
Colina, M., 2001. Determination of nutrients and heavy metal species in samples from Lake Maracaibo [Doctoral dissertation]. Sheffield: Sheffield Hallam University.
Contraloría General de la República – CGR, 2010. Actuación coordinada en el sistema nacional de control fiscal para evaluar los problemas ambientales y el deterioro de las relaciones ecológicas en la cuenca del río más importante de cada entidad federal [online]. Caracas. Retrieved in 2020, May 12, from:
Corona, J., 2013. Contaminación antropogénica en el Lago de Maracaibo, Venezuela. Biocenosis 27(1-2), 85-93.
Díaz, S., Martín-González, A., & Gutiérrez, J.C., 2006. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int. 32(6), 711-717. PMid:16650895.
Díaz-Borrego, L., Dupontt, J., Espina, K., Rincón, N., García, M., & Atencio, L., 2007. Utilización de sustratos orgánicos y resistencia a metales pesados por bacterias asociadas a
Dunlop, S., & Chapman, G., 1981. Detoxification of zinc and cadmium by the freshwater protozoan
El-Serehy, H., Al-Rasheid, K., & Shafik, H., 2012. Microbial loop populations: their abundances and trophodynamics in the Gulf of Aqaba, Red Sea. Turk. J. Fish. Aquat. Sci. 12, 565-573.
Fang, Z., Zhao, M., Zhen, H., Chen, L., Shi, P., & Huang, Z., 2014. Genotoxicity of tri- and hexavalent chromium compounds
Faure, V., Pinazo, C., Torréton, J., & Jacquet, S., 2010. Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: a new biogeochemical model based on microbial loop recycling. Mar. Pollut. Bull. 61(7-12), 465-479. PMid:20667554.
Fernandez-Leborans, G., & Olalla Herrero, Y., 2000. Toxicity and bioaccumulation of lead and cadmium in marine protozoan communities. Ecotoxicol. Environ. Saf. 47(3), 266-276. PMid:11139180.
Foissner, W., & Berger, H., 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 35(2), 375-482.
Foissner, W., 1999. Protist diversity: estimates of the near-imponderable. Protist 150(4), 363-368. PMid:10714770.
Fried, J., Ludwig, W., Psenner, R., & Schleifer, K.H., 2002. Improvement of ciliate identification: a new protocol for fluorescence
Gadd, G.M., 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(Pt 3), 609-643. PMid:20019082.
Girling, A.E., Pascoe, D., Janssen, C.R., Peither, A., Wenzel, A., Schäfer, H., Neumeier, B., Mitchell, G.C., Taylor, E.J., Maund, S.J., Lay, J.P., Jüttner, I., Crossland, N.O., Stephenson, R.R., & Persoone, G., 2000. Development of methods for evaluating toxicity to freshwater ecosystems. Ecotoxicol. Environ. Saf. 45(2), 148-176. PMid:10648133.
Gomiero, A., Dagnino, A., Nasci, C., & Viarengo, A., 2013. The use of protozoa in ecotoxicology: application of multiple endpoint tests of the ciliate
Gomiero, A., Sforzini, S., Dagnino, A., Nasci, C., & Viarengo, A., 2012. The use of multiple endpoints to assess cellular responses to environmental contaminants in the interstitial marine ciliate
Guertin, J., 2005. Toxicity and health effects of chromium (all oxidation states). In: Guertin, J., Avakiam, C.P. & Jacobs, J.A., eds. Chromium (VI) handbook. Boca Raton: CRC Press, 216-234.
Gupta, A.K., & Rajbanshi, V.K., 1988. Acute toxicity of cadmium to
Gustafsson, J.P., 2019. Vanadium geochemistry in the biogeosphere -speciation, solid-solution interactions, and ecotoxicity. J. Appl. Geochem. 102, 1-25.
Hong, Y.J., Liao, W., Yan, Z.F., Bai, Y.C., Feng, C.L., Xu, Z.X., & Xu, D.Y., 2020. Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J. Chem. 2020, 1-12.
Isibor, P.O., Imoobe, T.O., Dedeke, G.A., Adagunodo, T.A., & Taiwo, O.S., 2020. Health risk indices and zooplankton-based assessment of a tropical rainforest river contaminated with iron, lead, cadmium, and chromium. Sci. Rep. 10(1), 16896. PMid:33037243.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B., & Beeregowda, K., 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60-72. PMid:26109881.
Kamika, I., & Momba, M.N.B., 2013. Synergistic effects of vanadium and nickel on heavy metal-tolerant microbial species in wastewater systems. Desalin. Water Treat. 51(40-42), 7431-7446.
Kamika, I., & Momba, M.N.B., 2014. Effect of vanadium toxicity at its different oxidation states on selected bacterial and protozoan isolates in wastewater systems. Environ. Technol. 35(13-16), 2075-2085. PMid:24956802.
Kuhn, R., Pattard, M., Pernak, K., & Winter, A., 1989. Results of the harmful effects of water pollutants to
Liu, J., Qu, W., & Kadiiska, M.B., 2009. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 238(3), 209-214. PMid:19236887.
Lynn, D., 2008. The ciliated protozoa (3rd ed.). Bern: Springer Science and Business Media B.V.
Madoni, P., & Romeo, M.G., 2006. Acute toxicity of heavy metals towards freshwater ciliated protists. Environ. Pollut. 141(1), 1-7. PMid:16198032.
Madoni, P., Davoli, D., & Gorbi, G., 1994. Acute toxicity of lead, chromium and other heavy metals to ciliates from activated sludge plants. Bull. Environ. Contam. Toxicol. 53(3), 420-425. PMid:7919720.
Madoni, P., Davoli, D., Gorbi, G., & Vescovi, L., 1996. Toxic effect of heavy metals on the activated Sludge protozoan community. Water Res. 30(1), 135-141.
Mannazzu, I., 2001. Vanadium detoxification and resistance in yeast: a mini-review. Ann. Microbiol. 51(1), 1-9.
Marín-Leal, J.C., Carrasquero-Ferrer, S.C., Pire-Sierra, M.C., & Behling de Calmón, E.H., 2017. Dynamic of priority pollutants and wastewater adequacy in the Lake Maracaibo basin (Venezuela
Martin, T.R., & Holdich, D.M., 1986. The acute lethal toxicity of heavy metals to peracarid crustaceans (with particular reference to fresh-water asellids and gammarids). Water Res. 20(9), 1137-1147.
Martín-González, A., Díaz, S., Borniquel, S., Gallego, A., & Gutiérrez, J.C., 2006. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res. Microbiol. 157(2), 108-118. PMid:16129584.
Maurya, R., & Pandey, A.K., 2020. Importance of protozoa
Moore, J.W., 1991. Chromium. In: Moore, J.W., ed. Inorganic contaminants of surface water: research and monitoring priorities. New York: Springer-Verlag New York, 83-97.
Mortimer, M., Kasemets, K., & Kahru, A., 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa
Mukherjee, B., Halder, S., Ghosh, M.K., & Manasadeepa, R., 2013. Vanadium ions and proteins, distribution, metabolism, and biological significance. In: Uversky, V.N., ed. Encyclopedia of metalloproteins. Bern: Springer Science, 2306-2316.
Nalecz-Jawecki, G., Demkowicz-Dobrzainski, K., & Sawicki, J., 1993. Protozoan
Narayanan, N., Priya, M., Haridas, A., & Manilal, V.B., 2007. Isolation and culturing of a most common anaerobic ciliate,
Nilsson, J., 1981. Effects of copper on phagocytosis in
Okamoto, A., Yamamuro, M., & Tatarazako, N., 2015. Acute toxicity of 50 metals to
Paiva, T.S., Borges, B.N., & Silva-Neto, I.D., 2013. Phylogenetic study of class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data. Genet. Mol. Biol. 36(4), 571-585. PMid:24385862.
Panda, S.K., & Choudhury, S., 2005. Chromium stress in plants. Braz. J. Plant Physiol. 17(1), 95-102.
Parra-Pardi, G., 1979. Estudio integral sobre la contaminación del Lago de Maracaibo y sus afluentes, parte II: evaluación del proceso de eutroficación. Caracas: Ministerio del Ambiente y de los Recursos Naturales Renovables.
Piccinni, E., Irato, P., Coppellotti, O., & Guidolin, L., 1987. Biochemical and ultrastructural data on
Pickering, Q.H., & Henderson, C., 1966. The acute toxicity of some heavy metals of different species of warmwater fishes. Air Water Pollut. 10(6), 453-463. PMid:5946974.
Plaper, A., Jenko-Brinovec, S., Premzl, A., Kos, J., & Raspor, P., 2002. Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chem. Res. Toxicol. 15(7), 943-949. PMid:12119005.
Poirier, I., Hammann, P., Kuhn, L., & Bertrand, M., 2013. Strategies developed by the marine bacterium
Premke, K., & Arndt, H., 2000. Predation on heterotrophic flagellates by protist: food selectivity determined using a live-staining technique. Arch. Hydrobiol. 150(1), 17-28.
Pudpong, S., & Chantangsi, C., 2015. Effects of four heavy metals on cell morphology and survival rate of the ciliate
Qing-Hua, C., Run-Lin, X., Nora, F.Y.T., Siu G.C. & Paul, K.S.S., 2008. Use of ciliates (Protozoa: Ciliophora) as bioindicator to assess sediment quality of two constructed mangrove sewage treatment belts in Southern China. Mar. Pollut. Bull. 57(6-12), 689-694.
Rico, D., Martín-González, A., Díaz, S., De Lucas, P., & Gutiérrez, J.C., 2009. Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp. Biochem. Physiol. Part C Toxicol Pharmacol. 149(1), 90-96. PMid:18725323.
Rodríguez, G., 2000. El sistema de Maracaibo, biología y ambiente. Caracas: Instituto Venezolano de Investigaciones Científicas.
Rojas, J., 2012.
Rojas, J., Rincón, J., Marín, J., Ortega, P., Buonocore, R., Colina, M., & Montilla, J., 2015. Toxicidad y bioacumulación de cromo (Cr+6) en la almeja
Sanders, C.L., 1986. Toxicological aspect of energy production. New York: MacMillan Publishing Company.
Sauvant, M.P., Pepin, D., Groliere, C.A., & Bohatier, J., 1995. Effects of organic and inorganic substances on the cell proliferation of L-929 fibroblasts and
Shi, W., Zhao, X., Han, Y., Che, Z., Chai, X., & Liu, G., 2016. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety. Sci. Rep. 6(1), 20197. PMid:26795597.
Simanov, L., 1987. Toxic effect of copper and cadmium on algae and protozoa. Inst. Land Ecol. Czech. Acad. Sci. 28, 81-82.
Stendahl, D.H., & Sprague, J.B., 1982. Effects of water hardness and pH on vanadium lethality to rainbow trout. Water Res. 16(10), 1479-1488.
U. S. Environmental Protection Agency – USEPA, 1985. Ambient water quality criteria for chromium - 1984, EPA-440/5-84-031. Washington: USEPA.
Vignati, D.A.L., Dominik, J., Beye, M.L., Pettine, M., & Ferrari, B.J.D., 2010. Chromium (VI) is more toxic than chromium (III) to fresh water algae: a paradigm to revise? Ecotoxicol. Environ. Saf. 73(5), 743-749. PMid:20138363.
Vilas-Boas, J.A., Xavier, M., & Pedroso, R., 2020. Ciliates in ecotoxicological studies: a minireview. Acta Limnol. Bras. 32, e202.
Wang, Y., Fang, J., Leonard, S.S., & Krishna Rao, K.M., 2004. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic. Biol. Med. 36(11), 1434-1443. PMid:15135180.
Wong, M.H., Lau, W.M., Tong, T.Y., Liu, W.K., & Luk, K.C., 1982. Toxic effects of chromic sulphate on the common carp,
World Health Organization – WHO, 2009. Inorganic chromium (III) compounds, concise international chemical assessment document 76. Huntingdon: WHO.
Submitted date:
13/12/2021
Accepted date:
16/08/2022
Publication date:
06/09/2022