Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X6421
Acta Limnologica Brasiliensia
Original Article

Drivers of zooplankton spatial dynamics in a small neotropical river

Condutores da dinâmica espacial do zooplâncton em um pequeno rio neotropical

Pablo Henrique dos Santos Picapedra; Cleomar Fernandes; Gilmar Baumgartner; Paulo Vanderlei Sanches

Downloads: 1
Views: 1707

Abstract

Abstract: Aim: Our objective was to describe the structure and spatial patterns of the zooplankton community in a small Brazilian river system (Paranaíba River sub-basin) and evaluate the role of an oxbow lake in the dynamics of this community.

Methods: Zooplankton samples were collected from sites located in an oxbow lake and the Aporé River bed during the rainy and dry seasons. We collected these samples from the surface and bottom levels of two different zones (littoral and channel). For each hydrological season, analysis of variance was conducted to determine the differences in species richness and abundance of zooplankton among different sites (longitudinal), zones (lateral), and depths (vertical). Cluster analysis was performed to assess the similarity in species composition. In addition, a canonical correspondence analysis was used to select the environmental variables that best explained the variation in zooplankton abundance data.

Results: We recorded 152 species: 70 rotifers, 53 testate amoebae, 20 cladocerans, and 9 copepods. We observed changes in the species richness and abundance of zooplankton along the longitudinal axis of the river in both the rainy and dry seasons. However, we did not detect any lateral or vertical changes in these attributes. Cluster analysis also indicated that the greatest differences in species composition were in the longitudinal axis of the river. The longitudinal variability of zooplankton was mainly associated with the influence of an upstream oxbow lake, as well as the changes in water flow velocity, turbidity, and concentrations of suspended solids downstream.

Conclusions: Our results demonstrate the importance of a heterogeneity of hydrological characteristics as a structuring factor of the zooplankton community in the Aporé River. Thus, we highlight the relevance of actions to protect and maintain the natural characteristics of these environments.

Keywords

Aporé river, meander, microhabitat, potamoplankton, taxonomic composition

Resumo

Resumo: Objetivo: Nosso objetivo foi descrever a estrutura e os padrões espaciais da comunidade zooplanctônica em um pequeno sistema fluvial brasileiro (sub-bacia do rio Paranaíba) e avaliar o papel de um meandro na dinâmica dessa comunidade.

Métodos: Amostras de zooplâncton foram coletadas em pontos localizados em um meandro e no leito do rio Aporé durante os períodos chuvoso e seco. Coletamos essas amostras na superfície e fundo de duas zonas diferentes (litorânea e canal). Para cada período hidrológico, a análise de variância foi conduzida para determinar as diferenças na riqueza de espécies e abundância do zooplâncton entre os diferentes pontos (longitudinal), zonas (lateral) e profundidades (vertical). A análise de cluster foi realizada para avaliar a similaridade na composição de espécies. Além disso, uma análise de correspondência canônica foi usada para selecionar as variáveis ambientais que melhor explicaram a variação nos dados de abundância do zooplâncton.

Resultados: Registramos 152 espécies: 70 de rotíferos, 53 de amebas testáceas, 20 de cladóceros e 9 de copépodes. Observamos mudanças na riqueza de espécies e abundância do zooplâncton ao longo do eixo longitudinal do rio tanto no período chuvoso quanto no seco. No entanto, não detectamos nenhuma mudança lateral ou vertical nesses atributos. A análise de cluster também indicou que as maiores diferenças na composição de espécies estavam no eixo longitudinal do rio. A variabilidade longitudinal do zooplâncton foi associada principalmente a influência de um meandro a montante, bem como a mudanças na velocidade de fluxo d’água, turbidez e concentrações de sólidos suspensos à jusante.

Conclusões: Nossos resultados demonstraram a importância de uma heterogeneidade de características hidrológicas como fator estruturante da comunidade zooplanctônica no rio Aporé. Assim, destacamos a relevância de ações para proteger e manter as características naturais desses ambientes.
 

Palavras-chave

rio Aporé, meandro, micro-habitat, potamoplâncton, composição taxonômica

References

American Public Health Association – APHA, 2005. Standard methods for the examination water and wastewater. Washington: APHA.

Appel, D.S., Gerrish, G.A., Fisher, E.J., & Fritts, M.W., 2019. Zooplankton sampling in large riverine systems: A gear comparison. River Res. Appl. 36(1), 102-114. http://dx.doi.org/10.1002/rra.3539.

Arrieira, R.L., Alves, G.M., Schwind, L.T.F., & Lansac-Tôha, F.A., 2015. Local factors affecting the testate amoebae community (Protozoa: Arcellinida; Euglyphida) in a Neotropical floodplain. J. Limnol. 74(3), 444-452. https://doi.org/10.4081/jlimnol.2015.1078.

Baranyi, C., Hein, T., Holarek, C., Keckeis, S., & Schiemer, F., 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw. Biol. 47(3), 473-482. http://dx.doi.org/10.1046/j.1365-2427.2002.00822.x.

Basu, B.K., & Pick, F.R., 1997. Phytoplankton and zooplankton development in a lowland, temperate river. J. Plankton Res. 19(2), 237-253. http://dx.doi.org/10.1093/plankt/19.2.237.

Basu, B.K., Kalff, J., & Pinel-Alloul, B., 2000a. Midsummer plankton development along a large temperate river: the St. Lawrence River. Can. J. Fish. Aquat. Sci. 57(S1), 7-15. http://dx.doi.org/10.1139/f99-249.

Basu, B.K., Kalff, J., & Pinel-Alloul, B., 2000b. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River. Freshw. Biol. 45(4), 373-382. http://dx.doi.org/10.1046/j.1365-2427.2000.00635.x.

Bomfim, F.F., Mantovano, T., Amaral, D.C., Palhiarini, W.S., Bonecker, C.C., & Lansac-Tôha, F.A., 2017. Adjacent environments contribute to the increase of zooplankton species in a neotropical river. Acta Limnol. Bras. 29(0), e103. http://dx.doi.org/10.1590/s2179-975x10316.

Branco, C.W.C., Silveira, R.M.L., & Marinho, M.M., 2018. Flood pulse acting on a zooplankton community in a tropical river (Upper Paraguay River, Northern Pantanal, Brazil). Fundam. Appl. Limnol. 192(1), 23-42. http://dx.doi.org/10.1127/fal/2018/1155.

Bum, B.K., & Pick, F.R., 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr. 41(7), 1572-1577. http://dx.doi.org/10.4319/lo.1996.41.7.1572.

Casper, A.F., & Thorp, J.H., 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Res. Appl. 23(1), 73-85. http://dx.doi.org/10.1002/rra.966.

Czerniawski, R., & Domagała, J., 2012. Potamozooplankton communities in three different outlets from mesotrophic lakes located in lake-river system. Oceanol. Hydrobiol. Stud. 41(1), 46-56. http://dx.doi.org/10.2478/s13545-012-0006-2.

Dole-Olivier, M.J., Galassi, D.M.P., Marmonier, P., & Creuzé Des Châtelliers, M., 2001. The biology and ecology of lotic microcrustaceans. Freshw. Biol. 44(1), 63-91. http://dx.doi.org/10.1046/j.1365-2427.2000.00590.x.

Elmoor-Loureiro, L.M.A., 1997. Manual de identificação de cladóceros límnicos do Brasil. Brasília: Universa.

Elmoor-Loureiro, L.M.A. 2010. Cladóceros do Brasil: Famílias Chydoridae e Eurycercidae [online]. Brasília. Retrieved in 2019, January 20, from https://www.cladocera.wordpress.com/.

Godfrey, P.C., Pearson, R.G., Pusey, B.J., & Arthington, A.H., 2020. Drivers of zooplankton dynamics in a small tropical lowland river. Mar. Freshw. Res. 72(2), 173-185. http://dx.doi.org/10.1071/MF20067.

Gomes, L.F., Barbosa, J.C., Barbosa, H.O., Vieira, M.C., & Vieira, L.C.G., 2020. Environmental and spatial influences on stream zooplankton communities of the Brazilian Cerrado. Community Ecol. 21(1), 25-31. http://dx.doi.org/10.1007/s42974-020-00008-5.

Hepp, L.U., Milesi, S.V., Biasi, C., & Restello, R.M., 2010. Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia 27(1), 106-113. http://dx.doi.org/10.1590/S1984-46702010000100016.

Hynes, H.B.N., 1970. The ecology of running waters. Liverpool: University of Liverpool Press.

Jack, J.D., Fang, W., & Thorp, J.H., 2006. Vertical, lateral and longitudinal movement of zooplankton in a large river. Freshw. Biol. 51(9), 1646-1654. http://dx.doi.org/10.1111/j.1365-2427.2006.01600.x.

Jönsson, M., Ranåker, L., Nicolle, A., Ljungberg, P., Fagerberg, T., Hylander, S., Jephson, T., Lebret, K., von Einem, J., Hansson, L.-A., Nilsson, P.A., Balseiro, E., & Modenutti, B., 2011. Glacial clay affects foraging performance in a Patagonian fish and cladocerans. Hydrobiologia 663(1), 101-108. http://dx.doi.org/10.1007/s10750-010-0557-4.

Kirk, K.L., & Gilbert, J.J., 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741-1755. http://dx.doi.org/10.2307/1937582.

Kobayashi, T., Shiel, R.J., & Gibbs, P., 1998. Size structure of river zooplankton: seasonal variation, overall pattern and functional aspect. Mar. Freshw. Res. 49(6), 547-552. http://dx.doi.org/10.1071/MF97254.

Koste, W., 1978. Rotatoria Die Rädertiere Mitteleuropas begründet von Max Voigt- Monogononta. Berlin: Gebrüder Borntraeger.

Lair, N., 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl. 22(5), 567-593. http://dx.doi.org/10.1002/rra.923.

Lansac-Tôha, F.A., Bonecker, C.C., Velho, L.F.M., Simões, N.R., Dias, J.D., Alves, G.M., & Takahashi, E.M., 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Braz. J. Biol. 69(2, Suppl.), 539-549. PMid:19738961. http://dx.doi.org/10.1590/S1519-69842009000300009.

Lansac-Tôha, F.A., Velho, L.F.M., Higuti, J., & Takahashi, E.M., 2002. Cyclopidae (Crustacea, Copepoda) from the upper Paraná River floodplain, Brazil. Braz. J. Biol. 62(1), 125-133. PMid:12185912. http://dx.doi.org/10.1590/S1519-69842002000100015.

Legendre, P., Oksanen, J., & Ter-Braak, C.J.F., 2011. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2(3), 269-277. http://dx.doi.org/10.1111/j.2041-210X.2010.00078.x.

Lind, O.T., & Davalos-Lind, L., 1991. Association of turbidity and organic carbon with bacterial abundance and cell size in a large, turbid, tropical lake. Limnol. Oceanogr. 36(6), 1200-1208. http://dx.doi.org/10.4319/lo.1991.36.6.1200.

Matsumura-Tundisi, T., Tundisi, J.G., Souza-Soares, F., & Tundisi, J.E.M., 2015. Zooplankton community structure of the lower Xingu River (PA) related to the hydrological cycle. Braz. J. Biol. 75(3, Suppl.1), 47-54. PMid:26691075. http://dx.doi.org/10.1590/1519-6984.03814BM.

Melão, M.G.G., & Rocha, O., 2006. Life history, population dynamics, standing biomass and production of Bosminopsis deitersi (Cladocera) in a shallow tropical reservoir. Acta Limnol. Bras. 18(4), 433-450.

Pace, M.L., Findlay, S.E.G., & Lints, D., 1992. Zooplankton in advective environments: The Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci. 49(5), 1060-1069. http://dx.doi.org/10.1139/f92-117.

Padovesi-Fonseca, C., Rezende, R.S., Costa, D.F., & Martins-Silva, M.J., 2021. Spatial scales drive zooplankton diversity in savanna Cerrado streams. Community Ecol. 22(2), 249-259. http://dx.doi.org/10.1007/s42974-021-00052-9.

Paggi, S.B.J., Devercelli, M., & Molina, F.R., 2014. Zooplankton and their driving factors in a large subtropical river during low water periods. Fundam. Appl. Limnol. 184(2), 125-139. http://dx.doi.org/10.1127/1863-9135/2014/0520.

Perbiche-Neves, G., Boxshall, G., Previatelli, D., Rocha, C.E.F., & Nogueira, M.G., 2015. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of de la Plata-River Basin (South America). ZooKeys 497(497), 1-111. PMid:25931959. http://dx.doi.org/10.3897/zookeys.497.8091.

Picapedra, P.H.S., Fernandes, C., & Baumgartner, G., 2019. Structure and ecological aspects of zooplankton (Testate amoebae, Rotifera, Cladocera and Copepoda) in highland streams in southern Brazil. Acta Limnol. Bras. 31, e5. http://dx.doi.org/10.1590/s2179-975x2917.

Picapedra, P.H.S., Fernandes, C., & Lansac-Tôha, F.A., 2017. Zooplankton community in the Upper Parnaíba River (Northeastern Brazil). Braz. J. Biol. 77(2), 402-412. PMid:27533733. http://dx.doi.org/10.1590/1519-6984.20215.

Picapedra, P.H.S., Fernandes, C., Baumgartner, G., & Lansac-Tôha, F.A., 2018. Effect of slackwater areas on the establishment of plankton communities (testate amoebae and rotifers) in a large river in the semi-arid region of northeastern Brazil. Limnetica 37(1), 19-31. https://doi.org/10.23818/limn.37.03.

Portinho, J.L., Perbiche-Neves, G., & Nogueira, M.G., 2016. Zooplankton community and tributary effects in free-flowing section downstream a large tropical reservoir. Int. Rev. Hydrobiol. 101(1–2), 48-56. http://dx.doi.org/10.1002/iroh.201501798.

R Development Core Team, 2018. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2021, May 25, from https://www.R-project.org/

Ramalho, W.P., Batista, V.G., & Lozi, L.R.P., 2014. Anfíbios e répteis do médio rio Aporé, estados de Mato Grosso do Sul e Goiás, Brasil. Neotrop. Biol. Conserv. 9(3), 147-160. http://dx.doi.org/10.4013/nbc.2014.93.04.

Ramos, E.A., Okumura, A.T.R., Silva, A.G., Pereira, T.L., & Simões, N.R., 2021. Alpha and beta diversity of planktonic microcrustaceans are associated with environmental heterogeneity in the Frades River Basin, Brazil. Stud. Neotrop. Fauna Environ. 56(3), 1-12. http://dx.doi.org/10.1080/01650521.2021.1933702.

Rzoska, J., 1978. Zooplankton of the Nile system. In: Junk, W., ed. On the nature of rivers with case stories of Nile, Zaire and Amazon. The Hague: Dr Junk Publishers, 333-343.

Sluss, T.D., Cobbs, G.A., & Thorp, J.H., 2008. Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshw. Biol. 53(10), 1999-2010. http://dx.doi.org/10.1111/j.1365-2427.2008.02023.x.

Sluss, T.D., Jack, J.D., & Thorp, J.H., 2011. A comparison of sampling methods for riverine zooplankton. River Syst. 19(4), 315-326. http://dx.doi.org/10.1127/1868-5749/2011/0048.

Souza, M.B.G., 2008. Guia das tecamebas – Bacia do rio Peruaçu – Minas Gerais: subsídio para conservação e monitoramento da bacia do rio São Francisco. Belo Horizonte: Editora da UFMG.

Spaink, P.A., Ietswaart, T., & Roijackers, R., 1998. Plankton dynamics in a dead arm of the River Waal: a comparison with the main channel. J. Plankton Res. 20(10), 1997-2007. http://dx.doi.org/10.1093/plankt/20.10.1997.

Ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5), 1167-1179. http://dx.doi.org/10.2307/1938672.

Thorp, J.H., & Casper, A.F., 2003. Importance of biotic interactions in large rivers: an experiment with planktivorous fish, dreissenid mussels and zooplankton in the St Lawrence River. River Res. Appl. 19(3), 265-279. http://dx.doi.org/10.1002/rra.703.

Thorp, J.H., & Mantovani, S., 2005. Zooplankton of turbid and hydrologically dynamic prairie rivers. Freshw. Biol. 50(9), 1474-1491. http://dx.doi.org/10.1111/j.1365-2427.2005.01422.x.

Thorp, J.H., Black, A.R., Haag, K.H., & Wehr, J.D., 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Can. J. Fish. Aquat. Sci. 51(7), 1634-1643. http://dx.doi.org/10.1139/f94-164.

Thorp, J.H., Thoms, M.C., & Delong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22(2), 123-147. http://dx.doi.org/10.1002/rra.901.

Viroux, L., 1999. Zooplankton distribution in flowing waters and its implications for sampling: case studies in the River Meuse (Belgium) and the River Moselle (France, Luxembourg). J. Plankton Res. 21(7), 1231-1248. http://dx.doi.org/10.1093/plankt/21.7.1231.

Viroux, L., 2002. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river. J. Plankton Res. 4(4), 281-292. http://dx.doi.org/10.1093/plankt/24.4.281.

Zimmermann-Timm, H., Holst, H., & Kausch, H., 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia 593(1), 49-58. http://dx.doi.org/10.1007/s10750-007-9046-9.
 


Submitted date:
10/20/2021

Accepted date:
04/09/2022

Publication date:
05/05/2022

6274266aa9539575924b1b54 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections