Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X6022
Acta Limnologica Brasiliensia
Original Article

Mapping variability in CO2 saturation in Amazonian rivers at a large spatial scale indicates undersaturated areas

Mapeamento da variabilidade na saturação de CO2 em rios amazônicos em larga escala indica áreas subsaturadas

Sarian Kosten; Raquel Mendonça; Donato Seiji Abe; Fabio Roland; Vera Huszar

Downloads: 2
Views: 1858

Abstract

Abstract: Aim: Amazonian rivers outgas high amounts of carbon dioxide (CO2). However, the outgassing estimate remains uncertain due to the limited spatial distribution of data on water-atmosphere CO2 fluxes. So far, the vast extent of the basin and the difficult access to some regions have hampered complete mapping. We hypothesize that 1) CO2 supersaturation prevails in most Amazonian rivers and 2) undersaturation occurs only at a few locations, particularly during the low-water period.

Methods: To obtain insight on the spatial distribution of partial pressure of CO2 (pCO2), an essential determinant of CO2 fluxes, we analysed water sampled by a specially equipped hydroplane at an unprecedented sizeable spatial scale in the Amazon basin at 419 locations.

Results: Confirming our hypothesis, most rivers were supersaturated with CO2 concerning the atmosphere. In contrast to our expectations, however, we also found below equilibrium CO2 concentrations in several tributaries, particularly during low-water periods, when light availability in the water column is highest likely coinciding with the highest aquatic primary production rates. Correlation analyses further indicated that pCO2 values are positively related to the organic carbon density in the soils, net primary production, and the proportion of flood-able land in the sub-basins.

Conclusions: We conclude that supersaturation with CO2 occurs in most rivers, but several tributaries are undersaturated. Our findings highlight the different roles that Amazonian rivers can play in the regional carbon cycle. We argue that up-scaling should explicitly incorporate areas with riverine CO2 uptake, particularly at the sub-basin scale.

Keywords

pCO2, spatial variability, autotrophy, hydroplane sampling

Resumo

Resumo:: Objetivo: Rios amazônicos liberam quantidades expressivas de dióxido de carbono (CO2). Entretanto, essas estimativas permanecem incertas devido à limitada distribuição espacial de dados sobre fluxos água-atmosfera. A vasta extensão da bacia hidrográfica e a dificuldade de acesso a algumas regiões têm impedido um mapeamento completo até o momento. As hipóteses deste estudo são que: 1) a supersaturação de CO2 prevalece na maioria dos rios amazônicos; e 2) a subsaturação ocorre somente em poucos locais, particularmente durante períodos de águas baixas.

Métodos: Para melhor compreender a distribuição da pressão parcial de CO2 (pCO2), um determinante essencial de fluxos de CO2, nós analisamos amostras de água coletadas por um hidroavião especialmente equipado em uma escala espacial sem precedente em 419 locais na bacia Amazônica.

Resultados: Confirmando nossa primeira hipótese, a maioria dos rios esteve supersaturada em relação ao CO2 da atmosfera. No entanto, ao contrário de nossas expectativas, nós também encontramos concentrações de CO2 abaixo do equilíbrio em vários tributários, particularmente durante períodos de águas baixas, quando a disponibilidade de luz na coluna de água é maior provavelmente coincidindo com maiores taxas de produção primária. Análises de correlação indicaram que valores de pCO2 estão positivamente relacionados com a densidade de carbono nos solos, com a produção primária líquida e com a proporção de área alagável nas sub-bacias.

Conclusões: Nós concluímos que a supersaturação em CO2 ocorre na maioria dos rios, mas vários tributários são subsaturados. Nossos achados trazem luz aos diferentes papéis que os rios amazônicos podem desempenhar no ciclo do carbono regional. Também argumentamos que extrapolações espaciais deveriam explicitamente incorporar áreas com absorção de CO2 fluvial, particularmente na escala de sub-bacias.
 

Palavras-chave

pCO2, variabilidade espacial, autotrofia, amostragem por hidroavião

References

Abe, D., Tundisi, J.G., Matsumura-Tundisi, T., Tundisi, J.E.M., Sidagis-Galli, C., Teixeira-Silva, V., Afonso, G.F., Albarici, F.L., Von Haehling, P.H.A., Moss, G., & Moss, M., 2006. Monitoramento da qualidade ecológica das águas interiores superficiais e do potencial trófico em escala continental no Brasil com o uso de hidroavião. In: Tundisi, J.G., Matsumura-Tundisi, T., Tundisi, J.E.M. & Sidagis-Galli, C., eds. Eutrofização na América do Sul: causas consequências e tecnologias para gerenciamento e controle. São Carlos: Instituto Internacional de Ecologia, 225-239.

Abril, G., Martinez, J.-M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal, L., Meziane, T., Kim, J.-H., Bernardes, M.C., Savoye, N., Deborde, J., Souza, E.L., Albéric, P., Landim de Souza, M.F., & Roland, F., 2014. Amazon river carbon dioxide outgassing fuelled by wetlands. Nature 505(7483), 395-398. PMid:24336199. http://dx.doi.org/10.1038/nature12797.

Agência Nacional de Águas - ANA, 2019. Sistema de acompanhamento de reservatórios. Retrieved in 2019, January 10, from http://hidroweb.ana.gov.br/

Alin, S.R., Rasera, M.F.F.L., Salimon, C.I., Richey, J.E., Holtgrieve, G.W., Krusche, A.V., & Snidvongs, A., 2011. Physical controls on carbon dioxide transfer velocity and flux in low‐gradient river systems and implications for regional carbon budgets. J. Geophys. Res. Biogeosci. 116, G01009.

Almeida, R.M., Pacheco, F.S., Barros, N., Rosi, E., & Roland, F., 2017. Extreme floods increase CO2 outgassing from a large Amazonian river. Limnol. Oceanogr. 62(3), 989-999. http://dx.doi.org/10.1002/lno.10480.

Amaral, J., Farjalla, V.F., Melack, J.M., Kasper, D., Scofield, V., Barbosa, P.M., & Forsberg, B.R., 2019. Seasonal and spatial variability of CO2 in aquatic environments of the central lowland amazon basin. Biogeochemistry 143(1), 133-149. http://dx.doi.org/10.1007/s10533-019-00554-9.

Amaral, J., Melack, J.M., Barbosa, P.M., MacIntyre, S., Kasper, D., Cortés, A., Silva, T.S.F., Nunes-de-Sousa, R., & Forsberg, B.R., 2020. Carbon dioxide fluxes to the atmosphere from waters within flooded forests in the amazon basin. J. Geophys. Res. Biogeosci. 125(3), e5293. http://dx.doi.org/10.1029/2019JG005293.

Battin, T.J., Kaplan, L.A., Findlay, S., Hopkinson, C.S., Marti, E., Packman, A.I., Newbold, J.D., & Sabater, F., 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1(2), 95-100. http://dx.doi.org/10.1038/ngeo101.

Borges, A.V., Abril, G., Darchambeau, F., Teodoru, C.R., Deborde, J., Vidal, L.O., Lambert, T., & Bouillon, S., 2015. Divergent biophysical controls of aquatic CO2 and CH4 in the world’s two largest rivers. Sci. Rep. 5(1), 15614. PMid:26494107. http://dx.doi.org/10.1038/srep15614.

Butler, J.N., 1991. Carbon dioxide equilibria and their applications. Boca Ratón: CRC Press.

Cole, J. J., Caraco, N.F., Kling, G.W., & Kratz, T.K., 1994. Carbon-dioxide supersaturation in the surface waters of lakes. Science 265(5178), 1568-1570. PMid:17801536. http://dx.doi.org/10.1126/science.265.5178.1568.

Cole, J., Prairie, Y., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., & Melack, J., 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems (N. Y.) 10(1), 172-185. http://dx.doi.org/10.1007/s10021-006-9013-8.

Davidson, E.A., & Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165-173. PMid:16525463. http://dx.doi.org/10.1038/nature04514.

Davidson, E.A., Figueiredo, R.O., Markewitz, D., & Aufdenkampe, A.K., 2010. Dissolved CO2 in small catchment streams of eastern Amazonia: a minor pathway of terrestrial carbon loss. J. Geophys. Res. Biogeosci. 115(G4)

Davies, C.W., & Shedlovsky, T., 1964. Ion association. J. Electrochem. Soc. 111(3), 85C-86C. http://dx.doi.org/10.1149/1.2426129.

Devol, A.H., Forsberg, B.R., Richey, J.E., & Pimentel, T.P., 1995. Seasonal variation in chemical distributions in the Amazon (Solimões) river: A multiyear time series. Global Biogeochem. Cycles 9(3), 307-328. http://dx.doi.org/10.1029/95GB01145.

Duarte, C.M., & Prairie, Y.T., 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems (N. Y.) 8(7), 862-870. http://dx.doi.org/10.1007/s10021-005-0177-4.

Eaton, A.D., Clesceri, L.S., Greenberg, A.E., & Franson, M.A.H., 1998. Standard methods for the examination of water and wastewater. Washington: American Public Health Association, 20th ed.

Ellis, E.E., Richey, J.E., Aufdenkampe, A.K., Krusche, A.V., Quay, P.D., Salimon, C., & Cunha, H.B., 2012. Factors controlling water‐column respiration in rivers of the central and southwestern Amazon basin. Limnol. Oceanogr. 57(2), 527-540. http://dx.doi.org/10.4319/lo.2012.57.2.0527.

Gómez-Gener, L., Rocher-Ros, G., Battin, T., Cohen, M.J., Dalmagro, H.J., Dinsmore, K.J., Drake, T.W., Duvert, C., Enrich-Prast, A., Horgby, Å., Johnson, M.S., Kirk, L., Machado-Silva, F., Marzolf, N.S., McDowell, M.J., McDowell, W.H., Miettinen, H., Ojala, A.K., Peter, H., Pumpanen, J., Ran, L., Riveros-Iregui, D.A., Santos, I.R., Six, J., Stanley, E.H., Wallin, M.B., White, S.A., & Sponseller, R.A., 2021. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nat. Geosci. 14(5), 289-294. http://dx.doi.org/10.1038/s41561-021-00722-3.

Grace, J., & Malhi, Y., 2002. Carbon dioxide goes with the flow. Nature 416(6881), 594. PMid:11948337. http://dx.doi.org/10.1038/416594b.

Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Nemani, R.R., & Myneni, R., 2006. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33(6), L06445. http://dx.doi.org/10.1029/2005GL025583.

IGBP-DIS, 1998. Soildata (v.0): a program for creating global soil-property databases. France: IGBP Global Soils Data Task.

Johnson, M.S., Lehmann, J., Riha, S.J., Krusche, A.V., Richey, J.E., Ometto, J., & Couto, E.G., 2008. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 35(17), L17401. http://dx.doi.org/10.1029/2008GL034619.

Junk, W.J. 1997. General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk, J.J., ed. The central Amazon floodplain: ecology of a pulsing system. Berlin: Springer Verlag, 3-22. http://dx.doi.org/10.1007/978-3-662-03416-3_1.

Junk, W.J., 1983. Aquatic habitats in Amazonia. Environmentalist 3, 24-34.

Junk, W.J., Piedade, M., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L., Bozelli, R., Esteves, F., Cunha, C.N., & Maltchik, L., 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. 24(1), 5-22. http://dx.doi.org/10.1002/aqc.2386.

Junk, W.J., Piedade, M.T.F., Schöngart, J., Cohn-Haft, M., Adeney, J.M., & Wittmann, F.A., 2011. Classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31(4), 623-640. http://dx.doi.org/10.1007/s13157-011-0190-7.

MacIntyre, S., Wanninkof, R., & Chanton, J., 1995. Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Matson, P. & Harris, R., eds. Biogenic trace gases: measuring emissions from soil and water. Cambridge: Blackwell Science, 52-97.

Mayorga, E., Aufdenkampe, A.K., Masiello, C.A., Krusche, A.V., Hedges, J.I., Quay, P.D., Richey, J.E., & Brown, T.A., 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436(7050), 538-541. PMid:16049484. http://dx.doi.org/10.1038/nature03880.

Mayorga, E., Logsdon, M., Ballester, M., & Richey, J., 2012. LBA-ECO-CD-06 Amazon river basin land and stream drainage direction maps. Oak Ridge, Tennessee, USA: Oak Ridge National Laboratory Distributed Active Archive Center.

Melack, J.M., & Engle, D.L., 2009. An organic carbon budget for an Amazon floodplain lake. Internationale Vereinigung für theoretische und angewandte Limnologie. Verhandlungen 30(8), 1179-1182.

Melack, J.M., & Hess, L.L., 2010. Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk, W., Piedade, M.T.F., Wittmann, F., Schöngart, J & Parolin, P., eds. Amazonian floodplain forests ecophysiology, biodiversity and sustainable management. Dordrecht: Springer, 43-59. http://dx.doi.org/10.1007/978-90-481-8725-6_3.

Melack, J.M., 2016. Aquatic ecosystems. In: Nagy, L., Forsberg, B.R. & Artaxo, P., eds. Aquatic ecosystems. Interactions between biosphere, atmosphere and human land use in the Amazon basin: Springer: Heidelberg, 301-329. http://dx.doi.org/10.1007/978-3-662-49902-3_7.

Melack, J.M., Novo, E., Forsberg, B.R., Piedade, M.T., & Maurice, L., 2009. Floodplain ecosystem processes. In: Keller, M., Bustamante, M., Gash, J. & Dias, P.S., eds. Amazonia and global change. Washington: AGU, 525-541. http://dx.doi.org/10.1029/2008GM000721.

Moss, G., & Moss, M., 2005. Brasil das águas: revelando o azul do verde e amarelo. São Paulo: Supernova Editora.

Ponnamperuma, F., Tianco, E.M., & Loy, T.A., 1966. Ionic strengths of the solutions of flooded soils and other natural aqueous solutions from specific conductance. Soil Sci. 102(6), 408-413. http://dx.doi.org/10.1097/00010694-196612000-00009.

Poulter, B., Aragão, L., Heyder, U., Gumpenberger, M., Heinke, J., Langerwisch, F., Rammig, A., Thonicke, K., & Cramer, W., 2010. Net biome production of the Amazon basin in the 21st century. Glob. Change Biol. 16(7), 2062-2075. http://dx.doi.org/10.1111/j.1365-2486.2009.02064.x.

Rasera, M.F.F.L., Krusche, A.V., Richey, J.E., Ballester, M.V., & Victória, R.L., 2013. Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian rivers. Biogeochemistry 116(1-3), 241-259. http://dx.doi.org/10.1007/s10533-013-9854-0.

Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P., 2013. Global carbon dioxide emissions from inland waters. Nature 503(7476), 355-359. PMid:24256802. http://dx.doi.org/10.1038/nature12760.

Richey, J., Devol, A., Wofsy, S., Victoria, R., & Ribeiro, M., 1988. Biogenic gases and the oxidation and reduction of carbon in amazon river and floodplain waters. Limnol. Oceanogr. 33(4), 551-561. http://dx.doi.org/10.4319/lo.1988.33.4.0551.

Richey, J., Hedges, J.I., Devol, A.H., Quay, P.D., Victoria, R., Martinelli, L., & Forsberg, B.R., 1990. Biogeochemistry of carbon in the Amazon river. Limnol. Oceanogr. 35(2), 352-371. http://dx.doi.org/10.4319/lo.1990.35.2.0352.

Richey, J., Krusche, A.V., Johnson, M.S., Cunha, H.B., & Ballester, M.V., 2009. The role of rivers in the regional carbon balance. Geophys. Monogr. Ser. 186, 489-504. http://dx.doi.org/10.1029/2008GM000734.

Richey, J.E., Melack, J.M., Aufdenkampe, A.K., Ballester, V.M., & Hess, L.L., 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416(6881), 617-620. PMid:11948346. http://dx.doi.org/10.1038/416617a.

Rödig, E., Cuntz, M., Rammig, A., Fischer, R., Taubert, F., & Huth, A., 2018. The importance of forest structure for carbon fluxes of the amazon rainforest. Environ. Res. Lett. 13(5), 054013. http://dx.doi.org/10.1088/1748-9326/aabc61.

Sawakuchi, H.O., Neu, V., Ward, N.D., Barros, M.L.C., Valerio, A.M., Gagne-Maynard, W., Cunha, A.C., Less, D.F.S., Diniz, J.E.M., Brito, D.C., Krusche, A.V., & Richey, J.E., 2017. Carbon dioxide emissions along the lower Amazon river. Front. Mar. Sci. 4, 76. http://dx.doi.org/10.3389/fmars.2017.00076.

Scofield, V., Melack, J.M., Barbosa, P.M., Amaral, J.H.F., Forsberg, B.R., & Farjalla, V.F., 2016. Carbon dioxide outgassing from Amazonian aquatic ecosystems in the Negro River basin. Biogeochemistry 129(1-2), 77-91. http://dx.doi.org/10.1007/s10533-016-0220-x.

Sioli, H. 1984. The Amazon and its main affluents: Hydrography, morphology of the river courses, and river types. In: Sioli, H., ed. The Amazon. Dordrecht: Springer, 127-165, vol. 56. http://dx.doi.org/10.1007/978-94-009-6542-3_5.

Sullivan, M.J., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.L., Dourdain, A., Droissart, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, Â.G., Marimon Junior, B.H., Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., & Phillips, O.L., 2020. Long-term thermal sensitivity of earth’s tropical forests. Science 368(6493), 869-874. PMid:32439789. http://dx.doi.org/10.1126/science.aaw7578.

Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., et al, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54(6), 2298-2314. http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2298.

Ward, N.D., Keil, R.G., Medeiros, P.M., Brito, D.C., Cunha, A.C., Dittmar, T., Yager, P.L., Krusche, A.V., & Richey, J.E., 2013. Degradation of terrestrially derived macromolecules in the amazon river. Nat. Geosci. 6(7), 530-533. http://dx.doi.org/10.1038/ngeo1817.

Wissmar, R., Richey, J., Stallard, R., & Edmond, J., 1981. Plankton metabolism and carbon processes in the Amazon river, its tributaries, and floodplain waters, Peru‐Brazil, May‐June 1977. Ecology 62(6), 1622-1633. http://dx.doi.org/10.2307/1941517.
 


Submitted date:
09/13/2023

Accepted date:
02/14/2023

Publication date:
03/22/2023

641b4c7fa95395759c255f44 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections