Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X5722
Acta Limnologica Brasiliensia
Original Article

The relationship between zooplankton occupancy and abundance in a floodplain is mediated by the hydrological regime

A relação entre distribuição regional e abundância de espécies zooplanctônicas numa planície de inundação é mediada pelo regime hidrológico

Kamylla Nayara Jesus dos Santos; Priscilla de Carvalho; Ludgero Cardoso Galli Vieira; Rafaela Vendrametto Granzotti; Luis Mauricio Bini

Downloads: 0
Views: 1281

Abstract

Abstract:: Aim: Positive relationships between occupancy and abundance are often found for different groups of organisms and ecosystem types. However, to our knowledge, no study has sought to assess this relationship considering a context in which a particular mechanism is the most likely explanation. In this study, in addition to the positive relationship with abundance, we tested the hypothesis that occupancy of zooplankton species should be greater during the flood season because in this period the hydrological connectivity is greater than in the dry season, facilitating passive dispersal between floodplain environments.

Methods: Our study was carried out at 52 sites - including lakes and rivers - on the Araguaia River floodplain. We used an analysis of covariance to test the effects of abundance and hydrological period on zooplankton occupancy.

Results: We found, as expected, a positive relationship between occupancy and abundance of zooplankton species in each hydrological period. Our results also indicated that, with the increase in abundance, species occupancies were higher in the flood than in the dry season.

Conclusions: The positive effect of the flood on zooplankton occupancy can be explained by the increase in water level that increases the hydrological connectivity and the potential for plankton passive dispersal.

Keywords

Araguaia river, spatial distribution, flood pulse, hydrological connectivity, mechanisms

Resumo

Resumo:: Objetivo: Relações positivas entre distribuição regional e abundância são frequentemente encontradas para diferentes grupos de organismos e tipos de ecossistemas. No entanto, até onde sabemos, nenhum estudo buscou avaliar essa relação considerando um contexto no qual um determinado mecanismo fosse a explicação mais provável. Neste estudo, além da relação positiva com a abundância, nós testamos a hipótese de que a distribuição regional de espécies zooplanctônicas deveria ser maior durante o período de cheia uma vez que neste período a conectividade hidrológica é maior que no período de seca, facilitando a dispersão passiva entre os ambientes de uma planície de inundação.

Métodos: Nosso estudo foi realizado em 52 locais - incluindo lagoas e rios - na planície de inundação do rio Araguaia. Nós utilizamos uma análise de covariância para testar os efeitos da abundância e do período hidrológico sobre a distribuição regional.

Resultados: Encontramos, como esperado, uma relação positiva entre distribuição regional e abundância de espécies zooplanctônicas em cada período hidrológico. Nossos resultados também indicaram que, com o aumento da abundância, as distribuições regionais das espécies foram maiores no período de cheia.

Conclusões: O efeito positivo da cheia sobre a distribuição regional pode ser explicado pelo aumento do nível de água, que aumenta a conectividade hidrológica e o potencial de dispersão passiva do plâncton.
 

Palavras-chave

rio Araguaia, distribuição espacial, pulso de inundação, conectividade hidrológica, mecanismos

References

Baranyi, C., Hein, T., Holarek, C., Keckeis, S., & Schiemer, F., 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw. Biol. 47(3), 473-482. http://dx.doi.org/10.1046/j.1365-2427.2002.00822.x.

Blackburn, T.M., Cassey, P., & Gaston, K.J., 2006. Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. J. Anim. Ecol. 75(6), 1426-1439. PMid:17032375. http://dx.doi.org/10.1111/j.1365-2656.2006.01167.x.

Bonecker, C.C., Costa, C.L.D., Velho, L.F.M., & Lansac-Tôha, F.A., 2005. Diversity and abundance of the planktonic rotifers in different environments of the Upper Paraná River floodplain (Paraná State - Mato Grosso do Sul State, Brazil). In: Herzig, A., Gulati, R.D., & Jersabek, C.D., May, L., eds. Rotifera X. Dordrecht: Springer, 405-414. http://dx.doi.org/10.1007/1-4020-4408-9_42.

Borregaard, M.K., & Rahbek, C., 2010. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85(1), 3-25. http://dx.doi.org/10.1086/650265.

Bozelli, R.L., 1992. Composition of the zooplankton community of Batata and Mussurá Lakes and of the Trombetas River, State of Pará, Brazil. Amazoniana. Limnologia Oecol. Regionalis Systematis Fluminis Amazonas 12(2), 239-261.

Bozelli, R.L., Thomaz, S.M., Padial, A.A., Lopes, P.M., & Bini, L.M., 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753(1), 233-241. http://dx.doi.org/10.1007/s10750-015-2209-1.

Brown, J.H., 1984. On the relationship between abundance and distribution of species. Am. Nat. 124(2), 255-279. http://dx.doi.org/10.1086/284267.

Foggo, A., Bilton, D.T., & Rundle, S.D., 2007. Do developmental mode and dispersal shape abundance-occupancy relationships in marine macroinvertebrates? J. Anim. Ecol. 76(4), 695-702. PMid:17584375. http://dx.doi.org/10.1111/j.1365-2656.2007.01245.x.

Fox, J., & Weisberg, S., 2019. An R companion to applied regression (3rd ed.). Thousand Oaks: Sage.

Gaston, K.J., Blackburn, T.M., & Lawton, J.H., 1997. Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66(4), 579. http://dx.doi.org/10.2307/5951.

Gaston, K.J., & Blackburn, T.M., 2003. Dispersal and the interspecific abundance‐occupancy relationship in British birds. Glob. Ecol. Biogeogr. 12(5), 373-379. http://dx.doi.org/10.1046/j.1466-822X.2003.00054.x.

Gaston, K.J., Blackburn, T.M., Greenwood, J.J., Gregory, R.D., Quinn, R.M., & Lawton, J.H., 2000. Abundance-occupancy relationships. J. Appl. Ecol. 37(s1), 39-59. http://dx.doi.org/10.1046/j.1365-2664.2000.00485.x.

Hanski, I., 1991. Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc. Lond. 42(1-2), 17-38. http://dx.doi.org/10.1111/j.1095-8312.1991.tb00549.x.

Hanski, I., Kouki, J., & Halkka, A., (1993). Three explanations of the positive relationship between distribution and abundance of species. In: Ricklefs, R.E., & Schluter, D. eds. Species diversity in ecological communities: historical and geographical perspectives. Chicago: University of Chicago Press, 108-116.

Havel, J.E., & Shurin, J.B., 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol. Oceanogr. 49(4 Part 2), 1229-1238. http://dx.doi.org/10.4319/lo.2004.49.4_part_2.1229.

Holt, A.R., Gaston, K.J., & He, F., 2002. Occupancy-abundance relationships and spatial distribution: a review. Basic Appl. Ecol. 3(1), 1-13. http://dx.doi.org/10.1078/1439-1791-00083.

Holt, A.R., Warren, P.H., & Gaston, K.J., 2004. The importance of habitat heterogeneity, biotic interactions and dispersal in abundance-occupancy relationships. J. Anim. Ecol. 73(5), 841-851. http://dx.doi.org/10.1111/j.0021-8790.2004.00862.x.

Junk, W.J., Bayley, P.B., & Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106(1), 110-127.

Ning, N.S., Gawne, B., Cook, R.A., & Nielsen, D.L., 2013. Zooplankton dynamics in response to the transition from drought to flooding in four Murray-Darling Basin rivers affected by differing levels of flow regulation. Hydrobiologia 702(1), 45-62. http://dx.doi.org/10.1007/s10750-012-1306-7.

O'Brien, W.J., Barfield, M., Bettez, N.D., Gettel, G.M., Hershey, A.E., McDonald, M.E., Miller, M.C., Mooers, H., Pastor, J., Richards, C., & Schuldt, J., 2004. Physical, chemical, and biotic effects on arctic zooplankton communities and diversity. Limnol. Oceanogr. 49(4 Part 2), 1250-1261. http://dx.doi.org/10.4319/lo.2004.49.4_part_2.1250.

Pelicice, F.M., Agostinho, A.A., Akama, A., Andrade Filho, J.D., Azevedo-Santos, V.M., Barbosa, M.V.M., Bini, L.M., Brito, M.F.G., Anjos Candeiro, C.R., Caramaschi, E.P., Carvalho, P., Carvalho, R.A., Castello, L., Chagas, D.B., Chamon, C.C., Colli, G.R., Daga, V.S., Dias, M.S., Diniz Filho, J.A.F., Fearnside, P., Melo Ferreira, W., Garcia, D.A.Z., Krolow, T.K., Kruger, R.F., Latrubesse, E.M., Lima Junior, D.P., de Fátima Lolis, S., Lopes, F.A.C., Loyola, R.D., Magalhães, A.L.B., Malvasio, A., De Marco Junior, P., Martins, P.R., Mazzoni, R., Nabout, J.C., Orsi, M.L., Padial, A.A., Pereira, H.R., Pereira, T.N.A., Perônico, P.B., Petrere Junior, M., Pinheiro, R.T., Pires, E.F., Pompeu, P.S., Portelinha, T.C.G., Sano, E.E., Santos, V.L.M., Shimabukuro, P.H.F., Silva, I.G., Souza, L.B.E., Tejerina-Garro, F.L., Campos Telles, M.P., Teresa, F.B., Thomaz, S.M., Tonella, L.H., Vieira, L.C.G., Vitule, J.R.S., & Zuanon, J., 2021. Large-scale Degradation of the Tocantins-Araguaia River Basin. Environ. Manage. 68(4), 445-452. PMid:34341867. http://dx.doi.org/10.1007/s00267-021-01513-7.

R Core Team, 2020. R: a language and environment for statistical computing (Online). Vienna: R Foundation for Statistical Computing. Retrieved in 2022, August 24, from https://www.R-project.org/

Rocha, M.P., Bini, L.M., Siqueira, T., Hjort, J., Grönroos, M., Lindholm, M., Karjalainen, S.M., & Heino, J., 2018. Predicting occupancy and abundance by niche position, niche breadth and body size in stream organisms. Oecologia 186(1), 205-216. PMid:29090405. http://dx.doi.org/10.1007/s00442-017-3988-z.

Siqueira, T., Bini, L.M., Cianciaruso, M.V., Roque, F.O., & Trivinho-Strixino, S., 2009. The role of niche measures in explaining the abundance-distribution relationship in tropical lotic chironomids. Hydrobiologia 636(1), 163-172. http://dx.doi.org/10.1007/s10750-009-9945-z.

Ten Caten, C., Holian, L., Dallas, T., & Pither, J., 2022. Weak but consistent abundance-occupancy relationships across taxa, space and time. Glob. Ecol. Biogeogr. 31(5), 968-977. http://dx.doi.org/10.1111/geb.13472.

Thomaz, S.M., Bini, L.M., & Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1), 1-13. http://dx.doi.org/10.1007/s10750-006-0285-y.

Vieira, L.C.G., 2008. Padrões ecológicos da comunidade zooplanctônica na planície de inundação do rio Araguaia [Tese de doutorado em Ciências Ambientais]. Goiânia: Programa de Pós-graduação em Ecologia e Evolução, Universidade Federal de Goiás.

Vilmi, A., Tolonen, K.T., Karjalainen, S.M., & Heino, J., 2019. Niche position drives interspecific variation in occupancy and abundance in a highly-connected lake system. Ecol. Indic. 99, 159-166. http://dx.doi.org/10.1016/j.ecolind.2018.12.029.

Webb, T.J., Tyler, E.H.M., & Somerfield, P.J., 2009. Life history mediates large-scale population ecology in marine benthic taxa. Mar. Ecol. Prog. Ser. 396, 293-306. http://dx.doi.org/10.3354/meps08253.
 


Submitted date:
08/24/2022

Accepted date:
11/01/2022

Publication date:
11/17/2022

63767626a95395209e5d43d3 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections