Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X3224
Acta Limnologica Brasiliensia
Thematic Section: Neotropical Zooplankton Symposium

Effects of urban pollution on zooplankton diversity along the Almada River (Bahia, Brazil)

Efeitos da poluição urbana sobre a diversidade de zooplâncton no Rio Almada (Bahia, Brasil)

Jovenilson Ferreira dos Santos; Jaielle Rodrigues Nascimento; Nadson Ressyé Simões

Downloads: 0
Views: 179

Abstract

Aim: This study aimed to analyze the influence of small cities on the diversity of the zooplankton community along the Almada River, Bahia.

Methods: The samples were collected at points upstream (Clean Waters - CW) and downstream (Active Decomposition - DA) of the urban area of three cities: Almadina, Coaraci and Itajuípe, between the years 2020 and 2023.

Results: Among the physical and chemical variables, only dissolved oxygen and water temperature varied significantly between CW and DA. 90 taxa were identified, of which: 60 from Rotifera, 17 from Cladocera and 13 from Copepoda. It was possible to verify the presence of dominant taxa, characteristic of eutrophic environments, in points downstream of urban areas, namely: Lecane bulla bulla, Bdelloidea, Testudinella patina and Platyias quadricornis. The community attributes with significant variation between CW and DA were: abundance, evenness and the Shannon diversity index. The Jaccard dissimilarity between the CW and DA zones was high, indicating a low rate of species sharing between the CW and DA zones. In the BIOENV analysis, the variables of dissolved oxygen and electrical conductivity associated with variation in community structure were chosen.

Conclusions: pollution from urbanized regions in the Almada River reduces the evenness and diversity index of shannon, and increases the abundance of the zooplankton community.

Keywords

aquatic biodiversity; eutrophication; anthropogenic impacts; urbanization

Resumo

Objetivo: Esse estudo teve como objetivo, analisar a influência da poluição oriunda de pequenas cidades sobre a diversidade da comunidade zooplanctônica ao longo do Rio Almada, Bahia.

Métodos: As amostras foram coletadas em pontos a montante (Águas limpas-AL) e a jusante (Decomposição ativa-DA) da área urbana de três cidades: Almadina, Coaraci e Itajuípe, entre os anos de 2020 e 2023.

Resultados: Dentre as variáveis físicas e químicas, somente o oxigênio dissolvido e a temperatura da água variaram significativamente entre AL e DA. Um total de 90 táxons foram identificados, sendo: 60 de Rotifera, 17 de Cladocera e 13 de Copepoda. Foi possível constatar a presença de táxons dominantes, característicos de ambientes eutrofizados, nos pontos a jusante das áreas urbanas, sendo elas: Lecane bulla bulla, Bdelloidea, Testudinella patina e Platyias quadricornis. Os atributos da comunidade com variação significativa entre AL e DA foram: abundância, equitabilidade e o índice de diversidade de Shannon. A dissimilaridade de Jaccard entre as zonas de AL e DA foi alta, indicando um baixo índice de compartilhamento de espécies entre as zonas de AL e DA. Na análise BIOENV, as variáveis de oxigênio dissolvido e condutividade elétrica foram associadas a variação da estrutura da comunidade.

Conclusões: a poluição oriunda das regiões urbanizadas no Rio Almada diminui a equitabilidade e o índice de diversidade de Shannon e aumentam a abundância da comunidade zooplanctônica.

Palavras-chave

biodiversidade aquática; eutrofização; impactos antrópicos; urbanização

References

Adamczuk, M., Mieczan, T., Tarkowska-Kukuryk, M., & Demetraki-Paleolog, A., 2015. Rotatoria-Cladocera-Copepoda relations in the long-term monitoring of water quality in lakes with trophic variation (E. Poland). Environ. Earth Sci. 73(12), 8189-8196. http://doi.org/10.1007/s12665-014-3977-z.

Adbarzi, S.S.M., Tripathi, P., Choudhary, K.K., Kant, R., & Tripathi, V., 2020. Assessment of physico-chemical properties of pre and post treated wastewater of Prayagraj region and its effect on nearby Ganges River. Vegetos 33(2), 258-264. http://doi.org/10.1007/s42535-020-00103-y.

Agência Nacional de Águas – ANA, 2024. Sistemas de informações hidrológicas. Brasília: ANA.

Allan, J., 1976. Life history patterns in zooplankton. Am. Nat. 110(971), 165-180. http://doi.org/10.1086/283056.

Begon, M., Townsend, C.R., & Harper, J.L., 2007. Ecologia: de indivíduos a ecossistemas. Porto Alegre: Artmed.

Blettler, M., Garello, N., Ginon, L., Abrial, E., Espinola, L.A., & Wantzen, K.M., 2019. Massive plastic pollution in a mega-river of a developing country: sediment deposition and ingestion by fish (Prochilodus lineatus). Environ. Pollut. 255(3), 113348. PMid:31610388. http://doi.org/10.1016/j.envpol.2019.113348.

Blume, K.K., Macedo, J.C., Meneguzzi, A., Silva, L.B., Quevedo, D.M., & Rodrigues, M.A.S., 2010. Water quality assessment of the Sinos River, Southern Brazil. Braz. J. Biol. 70(4, Suppl.), 1185-1193. PMid:21225160. http://doi.org/10.1590/S1519-69842010000600008.

Borgwardt, F., Robinson, L., Trauner, D., Teixeira, H., Nogueira, A.J.A., Lillebø, A.I., Piet, G., Kuemmerlen, M., O’Higgins, T., McDonald, H., Arevalo-Torres, J., Barbosa, A.L., Iglesias-Campos, A., Hein, T., & Culhane, F., 2019. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396-1408. PMid:30586824. http://doi.org/10.1016/j.scitotenv.2018.10.339.

Cáceres, M.D., & Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12), 3566-3574. PMid:20120823. http://doi.org/10.1890/08-1823.1.

Cain, M.L., Bowman, W.D., & Hacker, S.D., 2011. Ecology. Sunderland: Sinauer Associates.

Clarke, K.R., & Ainsworth, M., 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92(3), 205-205. http://doi.org/10.3354/meps092205.

Derevenskaia, O.I., Borisova, N.I., & Unkovskaia, E.N., 2021. Zooplankton indices in the evaluation of the ecological state of the eutrophic lake (Case study: Karasikha Lake, Russia). Caspian J. Environ. Sci. 19(4), 701-708. http://doi.org/10.22124/CJES.2021.5143.

Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29(19), R960-R967. PMid:31593677. http://doi.org/10.1016/j.cub.2019.08.002.

Dufrêne, M., & Legendre, P., 1997. Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecol. Monogr. 67(3), 345-366. http://doi.org/10.2307/2963459.

Ejsmont-Karabin, J., & Karabin, A., 2013. The suitability of zooplankton as lake ecosystem indicators. Crustacean Trophic State Index. Pol. J. Ecol. 61, 561-573.

Elmoor-Loureiro, L. 1997. Manual de identificação de cladóceros Límnicos do Brasil. Brasília: Editora Universa, vol. 156.

Gaston, K.J., & Spicer, J.I., 2004. Biodiversity: an Introduction. Oxford: Blackwell Publishing.

Gomes, R.L., Moraes, M.E.B., Moreau, A.M.S., Moreau, M.S., Franco, G.B., & Marques, E.A.G., 2012. Aspectos físico-ambientais e de uso e ocupação do solo da bacia hidrográfica do Rio Almada-BA. Bol. Geogr. 30(2), 45-57. http://doi.org/10.4025/bolgeogr.v30i2.16423.

Gotelli, N.J., 2011. Princípios da ecologia e estatística. Porto Alegre: Artmed.

Haberman, J., & Haldna, M., 2014. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J. Limnol. 73(2), 263-273. http://doi.org/10.4081/jlimnol.2014.828.

Habib, M.A., Islam, A.R.M.T., Bodrud-Doza, M., Mukta, F.A., Khan, R., Bakar Siddique, M.A., Phoungthong, K., & Techato, K., 2020. Simultaneous appraisals of pathway and probable health risk associated with trace metals contamination in groundwater from Barapukuria coal basin, Bangladesh. Chemosphere 242, 125183. PMid:31675577. http://doi.org/10.1016/j.chemosphere.2019.125183.

He, H., Jeppesen, E., Bruhn, D., Yde, M., Hansen, J.K., Spanggaard, L., Madsen, N., Liu, W., Søndergaard, M., & Lauridsen, T.L., 2020. Decadal changes in zooplankton biomass, composition, and body mass in four shallow brackish lakes in Denmark subjected to varying degrees of eutrophication. Inland Waters 10(2), 186-196. http://doi.org/10.1080/20442041.2020.1732782.

Hillebrand, H., Bennett, D.M., & Cadotte, M.W., 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89(6), 1510-1520. PMid:18589516. http://doi.org/10.1890/07-1053.1.

Hsieh, C., Sakai, Y., Ban, S., Ishikawa, K., Ishikawa, T., Ichise, S., Yamamura, N., & Kumagai, M., 2011. Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa. Biogeosciences 8(5), 593-629. http://doi.org/10.5194/bg-8-1383-2011.

Instituto Brasileiro de Geografia e Estatística – IBGE, 2022. Censo demográfico 2022: resultados. Rio de Janeiro: IBGE.

Instituto Trata Brasil – ITB, 2024. Principais estatísticas. São Paulo: ITB.

Jafarabadi, A.R., Svirbutavičienè, R.E., Bakhtiari, A.R., & Kareiva, A., 2021. Polycyclic aromatic hydrocarbons (PAHs) in the non-bleached and bleached corals and their ambient environment: the role of suspended particulate matter, mucus, and positive matrix factorization model for identifying contributions to the carcinogenicity of PAH sources. Sci. Total Environ. 787, 147. http://doi.org/10.1016/j.scitotenv.2021.147688.

Jeppesen, E., Jensen, J.P., Søndergaard, M., Lauridsen, T., & Landkildehus, F.J.F.B., 2001. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw. Biol. 45(2), 201-218. http://doi.org/10.1046/j.1365-2427.2000.00675.x.

Jeppesen, E., Nõges, P., Davidson, T.A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T.L., Søndergaard, M., Sayer, C., Laugaste, R., Johansson, L.S., Bjerring, R., & Amsinck, S.L., 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676(1), 279-297. http://doi.org/10.1007/s10750-011-0831-0.

Jiang, H.J., Lu, A., Li, J., Ma, M., Meng, G., Chen, Q., Liu, G., & Yin, X., 2024. Effects of aquatic plant coverage on diversity and resource use efficiency of phytoplankton in urban wetlands: a case study in Jinan, China. Biology (Basel) 13(1), 44. PMid:38248475. http://doi.org/10.3390/biology13010044.

Jiang, X., Xie, J., Xu, Y., Zhong, W., Zhu, X., & Zhu, C., 2017. Increasing dominance of small zooplankton with toxic cyanobacteria. Freshw. Biol. 62(2), 429-443. http://doi.org/10.1111/fwb.12877.

Kindt, R., & Coe, R., 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre.

Koste, W., 1978. Rotatoria, die Rädertiere Mitteleuropas Ein Bestimmungswerk Begründet von Max Voigt. Uberordnung monogononta. Berlin: Gebrüber Borntraeger.

Kour, S., Slathia, D., Sharma, N., Kour, S., & Verma, R., 2022. Zooplankton as bioindicators of trophic status of a Lentic water source, Jammu (J&K) with remarks on first reports. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 92(2), 393-404. http://doi.org/10.1007/s40011-022-01349-z.

Legendre, P., & Legendre, L., 1998. Numerical ecology. Amsterdam: Elsevier Science.

Liang, D., Wang, Q., Wei, N., Tang, C., Sun, X., & Yang, Y., 2020. Biological indicators of ecological quality in typical urban river-lake ecosystems: the planktonic rotifer community and its response to environmental factors. Ecol. Indic. 112, 106-127. http://doi.org/10.1016/j.ecolind.2020.106127.

Liang, N., Zou, Z.H., & Wei, Y., 2019. Regression models (SVR, EMD and FastICA) in forecasting water quality of the Haihe River of China. Desalination Water Treat. 154, 147-159. http://doi.org/10.5004/dwt.2019.24034.

Louette, G., De Meester, L., & Declerck, S.A.J., 2008. Assembly of zooplankton communities in newly created ponds. Freshw. Biol. 53(11), 2309-2320. http://doi.org/10.1111/j.1365-2427.2008.02052.x.

Magurran, A.E., 2011. Medindo a diversidade biológica. Curitiba: UFPR.

Majeed, O.S., Nashaat, M.R., & Al-Azawi, A.J., 2022. The Effect of AL-Tharthar Canal on the zooplankton composition and diversity in the Tigris River. Al-Mustansiriyah J. Sci. 33(5), 53-64. http://doi.org/10.23851/mjs.v33i5.1314.

Margalef, R., 1974. Ecología. Barcelona: Omega.

Mello, K., Taniwaki, R.H., de Paula, F.R., Valente, R.A., Randhir, T.O., Macedo, D.R., Leal, C.G., Rodrigues, C.B., & Hughes, R.M., 2020. Multiscale land use impacts on water quality: assessment, planning, and future perspectives in Brazil. J. Environ. Manage. 270, 110879. PMid:32721318. http://doi.org/10.1016/j.jenvman.2020.110879.

Molles Junior, M.C., 2015. Ecology: concepts and applications. New York: McGraw-Hill Education.

Nascimento, J.R., Braghin, L.S., Cabral, C.R., Caliman, A., & Simões, N.R., 2023. Geographical, environmental, and biotic constraints define the spatial distribution of Diaphanosoma species (Cladocera). Adv. Oceanol. Limnol. 14(1), http://doi.org/10.4081/aiol.2023.10848.

Neves, I.F., Rocha, O., Roche, K.F., & Pinto, A.A., 2003. Zooplankton community structure of two marginal lakes of the River Cuiabá (Mato Grosso, Brazil) with analysis of Rotifera and Cladocera diversity. Braz. J. Biol. 63(2), 329-343. PMid:14509855. http://doi.org/10.1590/S1519-69842003000200018.

Ochocka, A., & Pasztaleniec, A., 2016. Sensitivity of plankton indices to lake trophic conditions. Environ. Monit. Assess. 188(11), 622. PMid:27752916. http://doi.org/10.1007/s10661-016-5634-3.

Oksanen, F.J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Sólymos, P., Stevens, M.H.H., & Wagner, H., 2017. vegan: community ecology package. R package Version 2.4-3. Vienna: R Foundation for Statistical Computing.

Palmer, M.E., Keller, W.B., & Yan, N.D., 2013. Gauging recovery of zooplankton from historical acid and metal contamination: the influence of temporal changes in restoration targets. J. Appl. Ecol. 50(1), 107-118. http://doi.org/10.1111/1365-2664.12007.

R Core Team, 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Reid, J.W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boll. Zool. 9, 17-143.

Ricklefs, R. E.; Miller, G. L., 2000. Ecology. New York: W.H. Freeman and Company.

Roberts, D. W., 2023. Package 'labdsv': ordination and multivariate analysis for ecology. R package version 2.1-0. Vienna: R Foundation for Statistical Computing.

Rogalski, M.A., Leavitt, P.R., & Skelly, D.K., 2017. Daphniid zooplankton assemblage shifts in response to eutrophication and metal contamination during the Anthropocene. Proc. Biol. Sci. 284(1859), 20170865. PMid:28747475. http://doi.org/10.1098/rspb.2017.0865.

Schoener, T.W., 1986. Overview: kinds of ecological communities - ecology becomes pluralistic. In: Diamond, J., Case, T.J., eds. Community ecology. New York: Harper & Row, 467-479.

Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595(1), 49-59. http://doi.org/10.1007/s10750-007-9003-7.

Shao, Z., Xie, P., & Zhuge, Y., 2010. Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes. Freshw. Biol. 46(7), 973-986. http://doi.org/10.1046/j.1365-2427.2001.00731.x.

Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J.J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J.C., Mooij, W.M., van Donk, E., & Winder, M., 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43(1), 429-448. http://doi.org/10.1146/annurev-ecolsys-110411-160251.

Soni, R., Pala, A.K., Tripathi, P., Jha, P.K., & Tripathi, V., 2022. Physicochemical analysis of wastewater discharge and impact on Ganges River of major cities of North India. Water Sci. Technol. Water Supply 2(6), 6157-6179. http://doi.org/10.2166/ws.2022.185.

Sousa, F.D.R., & Elmoor-Loureiro, L.M.A., 2019. Identification key for the Brazilian genera and species of Aloninae. Pap. Avulsos Zool. 59, e20195924. http://doi.org/10.11606/1807-0205/2019.59.24.

Souza, N.F., Campiolo, S., & Mariano, R., 2022. Evaluation of the effect of urbanization on water quality using bioindicators. Gaia Sci. 15(4), 1-15.

Suliman, I., Ibram, O., Tofan, L., Tudor, I.M., & Doroftei, M., 2019. Zooplankton communities as bioindicators in Zaghen restored wetland, Danube Delta Biosphere Reserve. Sci. Ann. Danub. Delta Inst. Tulcea 24, 2499. http://doi.org/10.7427/DDI.24.11.

Tóth, R., Czeglédi, I., Kern, B., & Erős, T., 2019. Land use effects in riverscapes: diversity and environmental drivers of stream fish communities in protected, agricultural and urban landscapes. Ecol. Indic. 101, 742-748. http://doi.org/10.1016/j.ecolind.2019.01.063.

von Sperling, M., 1996. Introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte: Universidade Federal De Minas Gerais, 2 ed.

Wang, C., Li, E., Zhang, L., Wei, H., Zhang, L., & Wang, Z., 2023. Long-term succession characteristics and driving factors of zooplankton communities in a typical subtropical shallow lake, central China. Environ. Sci. Pollut. Res. Int. 30(17), 49435-49449. PMid:36781671. http://doi.org/10.1007/s11356-023-25782-3.

Wang, J., Soininen, J., & Heino, J., 2021. Ecological indicators for aquatic biodiversity, ecosystem functions, human activities and climate change. Ecol. Indic. 132, 108250. http://doi.org/10.1016/j.ecolind.2021.108250.

Webb, A.L., Hughes, K.A., Grand, M.M., Lohan, M.C., & Peck, L.S., 2020. Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula. Sci. Total Environ. 698, 134268. PMid:31783446. http://doi.org/10.1016/j.scitotenv.2019.134268.

Wickham, H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. http://doi.org/10.1007/978-3-319-24277-4.

Zhang, K., Jiang, F., Chen, H., Dibar, D.T., Wu, Q., & Zhou, Z., 2019. Temporal and spatial variations in zooplankton communities in relation to environmental factors in four floodplain lakes located in the middle reach of the Yangtze River, China. Environ. Pollut. 251, 277-284. PMid:31082612. http://doi.org/10.1016/j.envpol.2019.04.139.
 


Submitted date:
04/14/2024

Accepted date:
01/15/2025

Publication date:
03/14/2025

67d423dda95395600b67aa24 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections