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Abstract: Aim: This study aimed to analyze the influence of small cities on the diversity of the 
zooplankton community along the Almada River, Bahia. Methods: The samples were collected at 
points upstream (Clean Waters - CW) and downstream (Active Decomposition - DA) of the urban 
area of three cities: Almadina, Coaraci and Itajuípe, between the years 2020 and 2023. Results: Among 
the physical and chemical variables, only dissolved oxygen and water temperature varied significantly 
between CW and DA. 90 taxa were identified, of which: 60 from Rotifera, 17 from Cladocera and 13 
from Copepoda. It was possible to verify the presence of dominant taxa, characteristic of eutrophic 
environments, in points downstream of urban areas, namely: Lecane bulla bulla, Bdelloidea, Testudinella 
patina and Platyias quadricornis. The community attributes with significant variation between CW and 
DA were: abundance, evenness and the Shannon diversity index. The Jaccard dissimilarity between the 
CW and DA zones was high, indicating a low rate of species sharing between the CW and DA zones. 
In the BIOENV analysis, the variables of dissolved oxygen and electrical conductivity associated with 
variation in community structure were chosen. Conclusions: pollution from urbanized regions in 
the Almada River reduces the evenness and diversity index of shannon, and increases the abundance 
of the zooplankton community. 
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Resumo: Objetivo: Esse estudo teve como objetivo, analisar a influência da poluição oriunda 
de pequenas cidades sobre a diversidade da comunidade zooplanctônica ao longo do Rio Almada, 
Bahia. Métodos: As amostras foram coletadas em pontos a montante (Águas limpas-AL) e a jusante 
(Decomposição ativa-DA) da área urbana de três cidades: Almadina, Coaraci e Itajuípe, entre os anos 
de 2020 e 2023. Resultados: Dentre as variáveis físicas e químicas, somente o oxigênio dissolvido 
e a temperatura da água variaram significativamente entre AL e DA. Um total de 90 táxons foram 
identificados, sendo: 60 de Rotifera, 17 de Cladocera e 13 de Copepoda. Foi possível constatar a 
presença de táxons dominantes, característicos de ambientes eutrofizados, nos pontos a jusante das 
áreas urbanas, sendo elas: Lecane bulla bulla, Bdelloidea, Testudinella patina e Platyias quadricornis. Os 
atributos da comunidade com variação significativa entre AL e DA foram: abundância, equitabilidade 
e o índice de diversidade de Shannon. A dissimilaridade de Jaccard entre as zonas de AL e DA foi 
alta, indicando um baixo índice de compartilhamento de espécies entre as zonas de AL e DA. Na 
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parasitism, predation and competition (Schoener, 
1986; Sommer et al., 2012; Zhang et al., 2019).

Despite its many water resources, Brazil has many 
regional differences and challenges when managing 
its surface waters. Among these, knowledge of the 
impact pollution has on zooplankton biodiversity 
will contribute to estimating the effects of a loss 
of diversity for each trophic level, strengthening 
conservation strategies for less impacted rivers 
(Jeppesen et al., 2011), and proposing restoration 
methods for the most impacted environments 
(Louette et al., 2008; Palmer et al., 2013).

In this context, the present study analyzes 
the effect of urban pollution on the zooplankton 
community of the Almada River, in the state of 
Bahia, Brazil. The main hypothesis is that urban 
pollution affects different aspects of the zooplankton 
biodiversity along river stretch. Therefore, we expect: 
(i) less species richness in active decomposition 
zones (a way of identifying polluted sites) due to 
a restricted number of species that can live in the 
environmental conditions of these sites; (ii) a higher 
overall abundance of zooplankton at the most active 
decomposition zones due to the opportunism of 
the species which are more resistant to the polluted 
environment; (iii) less species evenness in the affected 
sections due to more pollution-resistant species 
dominating; (iv) a decrease in the Shannon diversity 
index of zooplankton between clean water zone and 
active decomposition zones; (v) a high dissimilarity 
rate between the zones with clean water and those 
with active decomposition; (vi) the association of the 
community with pollution indicators.

2. Methods

Our research was carried out in the South of the 
state of Bahia, in the Almada River Basin (ARB) 
(Figure 1). The region is characterized as a tropical 
rainforest and the climate is classified as tropical 
according to the Köppen-Geiger classification. 
The ARB covers a drainage area of approximately 
1,572.46 km2, with a perimeter of 332.4 km. 
The river spans a total length of 188 km, from 
its source to its mouth at the Atlantic Ocean. 
The ARB experiences an annual mean precipitation 
of 1,780 mm and an average annual temperature 
of 22.9 °C (Gomes et al., 2012). Its resources 

1. Introduction

Rivers are lotic ecosystems which are essential for 
human development (Liang et al., 2019). However, 
the excessive discharge of pollutants into receiving 
water bodies due to urbanization makes the quality 
of their surface waters deteriorate (Habib et al., 
2020). This occurs because the pollution of 
water bodies alters their physical, chemical and 
biological parameters, causing, for example, a loss 
of biodiversity and eutrophication (Adbarzi et al., 
2020; Soni et al., 2022). A consequence of this is an 
alteration in the structure and the functions of these 
ecosystems (Borgwardt et al., 2019; Tóth et al., 2019; 
Webb et al., 2020; Jafarabadi et al., 2021), as well 
as negative impacts on the river’s ecosystem services 
of self-cleaning, supplying drinking water and even 
providing aesthetic beauty. This environmental 
problem is becoming a challenge, especially for 
developing countries (Blettler et al., 2019).

In Brazil, around 48% of sewage water is not 
treated and is discharged into the environment 
(ITB, 2024), with rivers as the main receivers of 
this form of environmental degradation, affecting 
human health and water biodiversity. Water 
biodiversity has a fundamental role in the dynamics 
of aquatic ecosystems, especially in nutrient cycling 
and energy flow (Wang et al., 2021; Jiang et al., 
2024). Among the biological communities that 
inhabit these ecosystems, zooplankton is one of 
the indicators of environmental change, as they 
provide a complete view of the state of the ecosystem 
(Majeed et al., 2022).

The zooplankton community is composed of 
microscopic invertebrate organisms that drift freely 
in water, among them Rotifers, Cladocera and 
Copepoda (Kour et al., 2022). They are important 
environmental indicators due to their short life cycle 
and their sensitivity to environmental gradients 
(Nascimento et al., 2023; Palmer et al., 2013). 
The composition of zooplankton species in the 
community and their abundance can be altered by 
pollution and can give an indication of the quality 
of a freshwater source (Suliman et al., 2019). As well 
as pollution, which is a combination of harmful 
alterations to water quality, the zooplankton 
community is affected by the concentration of 
nutrients, light, temperature, water transparency, 

análise BIOENV, as variáveis de oxigênio dissolvido e condutividade elétrica foram associadas a 
variação da estrutura da comunidade. Conclusões: a poluição oriunda das regiões urbanizadas no Rio 
Almada diminui a equitabilidade e o índice de diversidade de Shannon e aumentam a abundância 
da comunidade zooplanctônica. 

Palavras-chave: biodiversidade aquática; eutrofização; impactos antrópicos; urbanização.
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subsidize activities such as fishing, irrigation and 
public distribution. Along its course, the Almada 
River exhibits different stream orders. In the city of 
Almadina, the river is classified as a 4th-order stream, 
while in Coaraci and Itajuípe, it reaches 6th order, 
reflecting the increased contribution of tributaries 
and water volume. The final order of the river, at 
its mouth, is classified as 7th order, according to 
Strahler’s stream classification system. The sampling 
sites along the river showed an average width of 
5.84 ± 4.5 m and an average depth of 0.39 ± 0.17 m. 
These measurements vary between different sampling 
points, reflecting local geomorphological and 
hydrological characteristics, as well as the influence 
of anthropogenic disturbances. The sampling points 
therefore included areas of lesser and greater depth 
and width along its course.

The following cities were analyzed: Almadina 
(population of 5,218 and an area of 245.236 km2), 
Coaraci (population of 17,333 and an area 
of 274.500 km2), and Itajuípe (population of 
18,781 and an area of 270.752 km2) (IBGE, 2022). 
None of these cities have a sewage treatment system 
in place, resulting in 0% sewage treatment coverage 
for their respective populations.

Six data sampling points, spread upstream 
(clean water zones – CW) situated 1 to 5 km 
before entering the city limits, representing areas 
with minimal human impact, and downstream 
(zones impacted by the effects of urban pollution, 
representing the zone of Active Decomposition of 

organic matter – AD) located 1 to 2 km after passing 
through of three urban areas

The average distance between CW and AD 
was  3.07 ± 1.81 km. These were sampled annually 
from 2020 to 2023. The monthly mean discharge 
data were obtained from the fluviometric station 
located in the Itajuípe city river section (P3b). 
During the study (2020 to 2023) of the ARB varied 
from 1.0 m3/s to 71.4 m3/s, with the period from 
October to December seeing the highest discharge 
values, and from January to September the lowest 
values (Figure 2) (ANA, 2024).

We collected zooplankton using horizontal 
trawls of a 68 μm plankton net. The average filtered 
volume per sample was 636 ± 13 L. The filtered 
volume ( fV ) was calculated using the Formula 1:

 * ² *=fV r dπ  (1)

where fV  represents the filtered volume, r is the 
radius of the net mouth, and d is the distance 
traveled during each tow.

The samples were fixed with 4% formaldehyde 
buffered with calcium carbonate. Subsequently, the 
samples were taken to the laboratory to be identified 
to the species level using specialized literature (Koste, 
1978; Reid, 1985; Elmoor-Loureiro, 1997; Sousa 
& Elmoor-Loureiro, 2019). The species count was 
performed using an optical microscope with 2.5 ml 
chambers. Our count effort was of 3 complete 

Figure 1. Study area showing the Almada River Basin (ARB) and its respective sampling points for each urban area.
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chambers for samples with many individuals 
(more than 80 in 3 chambers), and of 10 complete 
chambers for samples with few individuals (less 
than 80 in 3 chambers). We also measured the pH, 
water temperature (WT), dissolved oxygen (DO) 
and electric conductivity (EC) in situ, with a Hanna 
9828 multiparameter probe.

We estimated the alpha diversity of the 
community by measuring the following attributes: 
species richness, abundance, evenness, and Shannon 
index. Abundance (A) was calculated using the 
Formula 2:

( *1) /= fA ni V  (2)

where ni is the number of individuals per sample 
and fV  is the filtered volume. The Shannon 
diversity index (H’) was determined using the 
Formula 3:

1
´ *  

s

i
H pi ln pi

=
= −∑  (3)

where S is the total number of species and pi 
represents the relative abundance of each species.

We conducted Student’s t and Mann-Whitney 
(W) tests to evaluate the differences in the diversity 
attributes and the physical and chemical variables 
between the CW and AD sampling points.

We used the Jaccard dissimilarity (Legendre & 
Legendre, 1998) to evaluate the difference in the 
composition of species between each CW and its 
corresponding AD zones, in other words, before and 
after each urban area. The Jaccard dissimilarity value 

varies from 0 to 1. When the value is close to 0, this 
means the CW and AD zones share many of the 
same species. When the value is close to 1, there is 
a high rate of species replacement between the sites.

We conducted a BIOENV analysis (Clarke & 
Ainsworth, 1993) to verify the relationship between 
the environmental variables and the variations in 
the community’s structure. During this procedure, 
the community’s abundance matrix was converted 
to a dissimilarity matrix based on the Bray-Curtis 
index. Simultaneously, the environmental data 
matrix was standardized. The BIOENV analysis 
seeks the best subset of variables that maximizes 
the correlation of the community’s dissimilarity 
matrix (Clarke & Ainsworth, 1993). To test the 
correlation’s significance, a Mantel test was carried 
out (Legendre & Legendre, 1998).

We evaluated the indicator species using the 
Indicator Value (IndVal) (Dufrêne & Legendre, 
1997). This method uses and combines the relative 
species abundance with the relative frequency at 
which the species in different habitats occur; in this 
case, the CW and AD zones. The IndVal organizes 
the species into groups and provides values between 
0 and 1. Species with a significance of (p<0.1) were 
considered as indicators (Dufrêne & Legendre, 
1997; Cáceres & Legendre, 2009).

All statistical analyses were performed using 
R software (R Core Team, 2015), with the 
BiodiversityR v.2.15.4 (Kindt & Coe, 2005), Vegan 
v.2.4.3 (Oksanen et al., 2017), labdsv v.2.1-0 (Roberts, 
2023), and ggplot2 v.3.4.4 (Wickham, 2016) 
packages.

3. Results

The Almada River water’s physical and chemical 
parameters displayed a high variability between 
2020 and 2023. The pH ranged from 5.90 to 
9.36 and was not different between the clean water 
(CW) and active decomposition (AD) zones. 
Similarly, the electric conductivity (EC) also 
presented a high variability, with values between 
66 μS.cm-1 and 1033 μS.cm-1, and did not differ 
between the CW and AD zones. This lack of 
distinction between zones can be attributed to the 
substantial seasonal variability in both pH and EC 
across the sampling periods, which likely masked 
any potential differences between the zones under 
investigation.

On the other hand, water temperature 
and the dissolved oxygen (DO) concentration 
did vary significantly between the CW and 
AD zones. The mean DO concentration was 

Figure 2. Runoff monthly means at the mouth of the 
Almada River for the years between 2020 and 2023 
Source: ANA (2024).
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6.43 ± 1.27 mg.L-1 in the CW zones and 4.45 ± 
2.18 mg.L-1 in the AD zones. The mean temperature 
was 25.7 ± 2.41 °C in the CW zones and 26.6 ± 
2.37 °C in the AD zones.

We identified 90 Rotifer, Cladocera and 
Copepoda taxa in the Almada River. The Rotifers 
had the highest richness of species (60 taxa) and the 
Lecanidae family was the richest (22 taxa). Seventeen 
Cladocera taxa were recorded, Chydoridae family 
the most representative (10 taxa). We recorded 13 
Copepod taxa and the Cyclopoida order had the 
highest value (12 taxa) (Table 1).

The species richness varied between 5 and 
33 taxa and did not show a significant difference 
between the CW and AD (Figure 3a; Table 2). 
On the other hand, the total abundance of the 
community differed between the CW and AD 
zones: on average, 176.8 ± 161.3 ind.m-3 were found 
in the CW zones and 3095 ± 6516 ind.m-3 in the 
AD zones (Figure 3b; Table 2). Furthermore, the 

evenness differed significantly between the CW and 
AD zones, varying on average 0.79 ± 0.1 in the CW 
zones and 0.49 ± 0.2 in the AD zones (Figure 3c; 
Table 2). The Shannon diversity index was also 
different, varying on average 2.7 ± 1.0 bits.ind-1 in 
the CW zones and 1.8 ± 0.9 bits.ind-1 in the AD 
zones (Figure 3d; Table 2).

The value of the Jaccard dissimilarity between 
the CW zones and their respective AD zones was 
high: it varied from 0.43 to 1.00. The value for the 
first quartile was 0.68, the median 0.78, and the 
third quartile 0.9. These results indicate a low rate 
of species sharing between the CW and AD zones, 
in other words, the regions above and below the 
urban areas.

The BIOENV analysis selected the DO and 
EC variables, showing a 0.26 correlation between 
the Euclidean distance matrix of the EC and DO 
and the dissimilarity matrix of the community. 
The Mantel test indicated that the 0.26 correlation 

Figure 3. Mean values of the zooplankton community in clean water (CW) and active decomposition (AD) zones 
of the Almada River between 2020 and 2023. (a) species richness; (b) abundance; (c) evenness; (d) Shannon index.



6  Santos, J.F., Nascimento, J.R. and Simões, N.R. 

Acta Limnologica Brasiliensia, 2025, vol. 37, e103

Table 1. Zooplankton species composition of the Almada River (Bahia) from 2020 to 2023.
ROTIFERA

Asplanchnidae
Asplanchna sp (Gosse, 1850) Asplanchna priodonta (Gosse, 1850)

Bdelloida
Bdelloidea sp (Hudson, 1884)

Brachionidae
Brachionus havanaensis (Rousselet, 1911) Plationus patulus macracanthus (Daday, 1786)
Brachionus quadridentatus (Hermann, 1783) Platyias quadricornis (Ehrenberg, 1832)
Brachionus falcatus (Zacharias, 1898) Keratella americana (Carlin, 1943)
Brachionus sp (Pallas, 1766) Keratella cochlearis (Gosse, 1851)
Plationus patulus patulus (Müller, 1786) Keratella tropica (Apstein, 1907)

Dicranophoridae
Dicranophorus sp (Nitzsch, 1827) Dicranophorus claviger (Hauer, 1965)

Euchlanidae
Dipleuchlanis sp (Beauchamp, 1910) Euchlanis dilatata (Ehrenberg, 1832)
Dipleuchlanis propatula (Gosse, 1886) Euchlanis incisa (Carlin, 1939)
Euchlanis sp (Ehrenberg, 1832)

Lecanidae
Lecane papuana (Murray, 1913) Lecane ludwigii (Eckstein 1883)
Lecane luna (Müller, 1776) Lecane bulla (Gosse, 1851)
Lecane lunaris (Ehrenberg, 1832) Lecane sola (Hauer, 1936)
Lecane robertsonae (Segers, 1993) Lecane tabida (Harring & Myers, 1926)
Lecane cornuta (Müller, 1786) Lecane stenroosi (Meissner, 1908)
Lecane curvicornis (Murray, 1913) Lecane sp (Remane, 1933)
Lecane hamata (Stokes, 1896) Lecane pyriformis (Daday, 1905)
Lecane clasterocerca (Schmarda, 1859) Lecane quadridentata (Ehrenberg, 1830)
Lecane signifera (Jennings, 1893) Lecane thalera (Harring & Myers, 1926)
Lecane thienemane (Hauer, 1938) Lecane furcata (Murray, 1913)
Lecane leontina (Turner, 1892) Lecane asymetrica (Murray, 1913)

Lepadellidae
Colurella obtusa (Gosse, 1886) Lepadela acuminata acuminata (Ehrenberg, 1834)
Lepadella sp (Bory de St.Vincent, 1826) Lepadella benjamini benjamini (Harring, 1916)
Lepadela obtusa (Wang, 1961) Lepadella dactyliseta (Stenroos, 1898)
Lepadella patella (Müller, 1773) Lepadella bejamini brasilienses (Koste, 1972)
Lepadella ovalis (Müller, 1786) Squatinella sp (Bory de St.Vincent, 1826)

Mytilinidae
Mytilina ventralis (Ehrenberg, 1830) Mytilina mucronata (Müller, 1773)

Scaridiidae
Scaridium sp (Ehrenberg, 1830) Scaridium longicaudum (Müller, 1786)

Synchaetidae
Polyarthra dolichoptera (Idelson, 1925)

Testudinellidae
Testudinella patina (Hermann, 1783) Testudinella mucronata (Gosse, 1886)

Trichocercidae
Trichocerca sp (Lamarck, 1801)

CLADOCERA
Chydoridae
Anthalona neotropica (Elmoor-Loureiro & Debastiani-Júnior, 2015) Flavalona iheringula (Kotov & Sinev, 2004)
Anthalona sp (Van Damme, Sinev & Dumont, 2011) Flavalona margipluma (Sousa, Santos, Güntzel, Diniz, Melo Junior 

& Elmoor-Loureiro, 2015).
Chydorus nitidulus (Sars, 1901) Karualona muelleri (Richard, 1897)
Chydorus eurinotus (Sars, 1901) Magnospina dentifera (Sars, 1901)
Dunhevedia odontoplax (Sars, 1901) Nicsmirnovius paggii (Sousa & Elmoor-Loureiro, 2017)

Daphniidae
Ceriodaphnia cornuta (Sars, 1885)

Ilyocryptidae
Ilyocryptus sordidus (Liévin, 1848)

Macrothricidae
Macrothrix squamosa (Sars, 1900) Macrothrix laticornis (Jurine, 1820)
Macrothrix triserialis (Brady, 1886)

Moinidae
Moina minuta (Hansen, 1899)

Sididae
Diaphanosoma birgei (Korínek, 1981)
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was significant (p = 0.003). Therefore, there is a link 
between the environmental and the community 
structure’s variations.

The Indicator Value (IndVal) significantly 
implied the presence of eight species (p-value ≤ 0.1), 
with seven species in the AD zones and only one 
in the CW zones. The Bdelloidea family and the 
Testudinella patina species presented the highest 
indicator values (Table 3).

4. Discussion

Pollution is one of the main causes of 
biodiversity depletion in freshwater sources during 
the Anthropocene (Dudgeon, 2019). In Brazil, 
this pollution has many causes, but urbanization is 
one of the central ones and is a source of organic 
waste, fecal coliforms, nitrogen and phosphorus 
(Mello et al., 2020). This happens because of the 
low rate of sewage treatment in Brazilian cities. 

As a response to the effects of this type of pollution, 
our results show that the zooplankton fauna of the 
Almada River (Brazil) responds to the pollution of 
three cities along its course.

The qualitative urban pollution indicators in the 
AD zones of the Almada River were the presence of 
solid residues, animals along the riverbank, exposed 
banks and the presence of aquatic macrophytes 
of the Eicchornia, Polygonum and Pistia genera. 
We also measured lower concentrations of DO in 
the AD regions. This is associated with the high 
concentrations of organic matter caused by the 
discharge of domestic effluent from urban zones. 
The decay of the organic matter is accelerated by 
aerobic bacteria and, therefore, reduces the DO 
concentration of the water (Blume et al., 2010).

The species richness did not differ between the 
CW and AD zones. The percentage of species they 
have in common was low, indicating a change in 

Table 1. Continued...
ROTIFERA

COPEPODA
Cyclopidae
Eucyclops n. neumani (Pesta, 1927) Microcyclops ceibaensis (Marsh, 1919)
Ectocyclops bromelicola (Kiefer, 1935) Microcyclops finitimus (Dussart, 1984)
Ectocyclops rubescens (Brady, 1904) Thermocyclops decipiens (Kiefer, 1929)
Mesocyclops ellipticus (Kiefer, 1936) Paracyclops andinus (Kiefer, 1957)
Mesocyclops meridianus (Kiefer, 1926) Tropocyclops prasinus (Fischer, 1860)
Microcyclops alius (Kiefer, 1935) Paracyclops fimbriatus (Fischer, 1853)

Harpacticoida
Harparticoida (Sars, 1903)

Table 2. T test values for the attributes of the zooplankton communities between the upstream and downstream 
zones of the cities of Almadina, Coaraci and Itajuípe along the Almada River, measured between 2020 and 2023.

Attribute T test p-value
Richness -1.44 0.18
Evenness 4.19 <0.01

Shannon index 67 0.03
Abundance 0.1659 <0.01

Table 3. Indicator Values (IndVal) of the zooplankton species found in the Almada River between 2020 and 2023 
(p-value ≤ 0.1).

Taxa Site IndVal p-value
Lecane Lunaris Clean water 0.33 0.08

Bdelloidea Active decomposition 0.82 0.05
Testudinella patina Active decomposition 0.60 0.08
Colurella obtusa Active decomposition 0.57 0.03

Platyias quadricornis Active decomposition 0.56 0.05
Lecane curvicornis Active decomposition 0.39 0.10

Lecane hamata Active decomposition 0.33 0.10
Lecane ludwigii Active decomposition 0.33 0.09
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the river’s fauna when it receives a discharge of 
organic pollutants. Eutrophication often changes 
the composition of the zooplankton community 
(Jeppesen et al., 2001; Hsieh et al., 2011; 
Rogalski et al., 2017; He et al., 2020). This occurs 
due to the selective conditions of eutrophication, 
which lead to a change in the proportion of species 
in each zooplankton taxonomic group and a change 
in the quantitative indicators (Derevenskaia et al., 
2021).

Among the different responses, we verified a 
qualitative (species richness), quantitative (density 
of individuals) and quali-quantitive (represented by 
the IndVal) increase in the species of rotifers in the 
AD zones. Environments with eutrophication tend 
to have a higher proportion of rotifers in relation 
to crustaceans (Ejsmont-Karabin & Karabin 2013; 
Haberman & Haldna, 2014; Adamczuk et al., 2015; 
Ochocka & Pasztaleniec, 2016). Consequently, 
the abundance of zooplankton was higher in the 
AD zones in comparison to the CW zones, due 
to the high density of rotifers. Small zooplankton 
species are favored by pollution, making them 
dominate in environments with eutrophication 
(Shao et al., 2010; Jiang et al., 2017). These facts 
are associated with rotifers’ versatility in inhabiting 
different aquatic environments and occupying 
rapidly opening niches (Liang et al., 2020). 
Furthermore, their high tolerance to environmental 
changes makes them good at recolonizing aquatic 
environments after strong disturbances (Segers, 
2008). According to Wang et al. (2023), the rotifera 
phylum is one of the main contributors to the 
increase in zooplankton biomass and abundance, 
due to a proportional increase in tolerant species and 
to the species’ dominance index in eutrophication 
conditions.

In this study, we confirmed the presence of the 
following rotifer taxa, abundant in the AD zones: 
Bdelloidea, Lecane bulla, Platyias quadricornis and 
Testudinella patina. These results, coupled with those 
obtained in the IndVal analysis, occur because these 
organisms are r-strategists. They have a high capacity 
to adapt, are small, have feeding plasticity, high 
reproductive rates, reproduce asexually, can produce 
resistant eggs, have phenotypic variability and a 
short life cycle (Allan, 1976; Neves et al., 2003).

Evenness was different for the CW and AD 
zones. This parameter refers to how uniform the 
relative abundance distribution of different species 
in the ecosystem or community (Hillebrand et al., 
2008). Pollution can increase restrictive conditions 
for many species, altering which ones make up the 

environment (von Sperling, 1996). In this situation, 
species which tolerate change end up dominating 
polluted water bodies (Derevenskaia et al., 2021). 
Consequently, this tends to decrease the species 
evenness in AD zones near urban areas. Ecosystems 
with a high evenness are often considered more 
resilient to change, as they do not depend as much on 
one single species (Ricklefs & Miller, 2000). On the 
other hand, a low evenness indicates a community 
dominated by few species, which can make an 
ecosystem more susceptible to environmental 
changes and disturbances (Begon et al., 2007). 
Therefore, AD areas and sections downstream from 
cities are sites with more biodiversity vulnerability.

Higher Shannon index values for the CW zones 
indicate a more diverse community, considering 
both species richness and evenness (Gotelli, 2011; 
Magurran, 2011). The Shannon diversity index 
is a positive indication that an environment is 
ecologically more balanced, with a larger number 
of species more evenly distributed throughout the 
ecological niche (Margalef, 1974). In comparison, 
lower values of the index for the AD zones reveal a 
less diverse and even community (Gaston & Spicer, 
2004; Molles Junior, 2015), which can be caused 
by environmental disturbances (such as pollution), 
or even a degradation of the habitat due to other 
anthropic actions (Cain et al., 2011).

In this study, we use the term ‘pollution’ 
in a broad manner to denote environmental 
deterioration along the Almada River. Excluding 
species richness, all the other community attributes 
presented lower values in the AD zones, indicating 
the negative effect pollution has on the zooplankton 
community. The variation in the DO concentration 
and EC (parameters which indicate pollution) 
were associated with a variation in the structure 
of the zooplankton community. This suggests that 
the changes in the structure of the community 
happened due to the environmental changes in the 
Almada River. Souza et al. (2022) also demonstrated 
the negative effect of the presence of cities along the 
Almada River, by comparing the diversity of aquatic 
insects upstream and downstream of these cities.

5. Conclusion

We observed variation in the diversity indices 
of the zooplankton community between the CW 
and AD zones along the Almada River. These 
zones exhibited high abundance, low diversity 
and low evenness of the zooplankton community. 
Therefore, this study provides information about 
the zooplankton community’s response to anthropic 
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environmental stress factors, showing the viability of 
using the community as an environmental indicator 
and for monitoring water quality in future studies.
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