Evaluating the growth potential of harmful cyanobacteria in aquatic environments under climate change scenarios
Avaliando o potencial de crescimento de cianobactérias nocivas em ambientes aquáticos em cenários de mudanças climáticas
Ariane Guimarães; Pablo Silva; Daniel Paiva Silva
Abstract
Keywords
Resumo
Palavras-chave
References
Andrade, A.F.A., Velazco, S.J.E., & De Marco Júnior, P., 2020. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Model. Softw. 125, 104615.
Araújo, M.B., & New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22(1), 42-47. PMid:17011070.
Booth, T.H., Nix, H.A., Busby, J.R., & Hutchinson, M.F., 2014. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20(1), 1-9.
Budai, P., & Clement, A., 2007. Estimation of nutrient load from urban diffuse sources: experiments with runoff sampling at pilot catchments of Lake Balaton, Hungary. Water Sci. Technol. 56(1), 295-302. PMid:17711027.
Cameron, E.S., Krishna, A., Emelko, M.B., & Müller, K.M., 2024. Sporadic diurnal fluctuations of cyanobacterial populations in oligotrophic temperate systems can prevent accurate characterization of change and risk in aquatic systems. Water Res. 252, 121199. PMid:38330712.
Chapra, S.C., Boehlert, B., Fant, C., Bierman Junior, V.J., Henderson, J., Mills, D., Mas, D.M.L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K.M., & Paerl, H.W., 2017. Climate change impacts on harmful algal blooms in u.s. freshwaters: a screening-level assessment. Environ. Sci. Technol. 51(16), 8933-8943. PMid:28650153.
Charlton, M.B., Bowes, M.J., Hutchins, M.G., Orr, H.G., Soley, R., & Davison, P., 2018. Mapping eutrophication risk from climate change: future phosphorus concentrations in English rivers. Sci. Total Environ. 613–614, 1510-1526. PMid:28886914.
De Marco, P., & Nóbrega, C.C., 2018. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS One 13(9), e0202403. PMid:30204749.
Diniz Filho, J.A.F., Ferro, V.G., Santos, T., Nabout, J.C., Dobrovolski, R., & De Marco Jr, P., 2010. The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of
Domisch, S., Amatulli, G., & Jetz, W., 2015. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2(1), 150073. PMid:26647296.
Fick, S.E., & Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302-4315. https://doi.org/10.1002/joc.5086.
Global Biological Information Facility - GBIF, 2023. Global biodiversity information facility [online]. Retrieved in 2023, May 15, from
Goncharenko, I., Krakhmalnyi, M., Velikova, V., Ascencio, E., & Krakhmalnyi, A., 2021. Ecological niche modeling of toxic dinoflagellate
Guimarães, A., da Silva, P.H., Carneiro, F.M., & Silva, D.P., 2020. Using distribution models to estimate blooms of phytosanitary cyanobacteria in Brazil. Biota Neotrop. 20(2), e20190756.
Guisan, A., Edwards, T.C., & Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157(2-3), 89-100. http://doi.org/10.1016/S0304-3800(02)00204-1.
Hamilton, C., 2018. Climate change. In: Juergensmeyer, M., Sassen, S., Steger, M.B., & Faessel, V., eds, The Oxford Handbook of Global Studies. Oxônia: Oxford University Press, 631-646.
Hong, Y., Steinman, A., Biddanda, B., Rediske, R., & Fahnenstiel, G., 2006. Occurrence of the toxin-producing cyanobacterium
Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124.
Hunter, P.D., Tyler, A.N., Carvalho, L., Codd, G.A., & Maberly, S.C., 2010. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ. 114(11), 2705-2718.
Igwaran, A., Kayode, A.J., Moloantoa, K.M., Khetsha, Z.P., & Unuofin, J.O., 2024. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 235(1), 1-26.
Intergovernamental Panel on Climate Change, 2022. Climate Change 2022 - Impacts, Adaptation and Vulnerability. Working Group II contribution to the Sixth Assessment Report of the Intergovernamental Panel on Climate Change. Cambridge: Cambridge University Press.
Kimambo, O.N., Gumbo, J.R., & Chikoore, H., 2019. The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. Heliyon 5(3), e01312. PMid:30899834.
Kimambo, O.N., Gumbo, J.R., Msagati, T.A.M., & Chikoore, H., 2022. Harmful algae in aquaculture systems in Ngerengere Catchment, Morogoro, Tanzania: descriptive community structure and environmental concerns. Phys. Chem. Earth Parts ABC 125, 103103.
Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J.R., 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295-335.
Leroy, B., Delsol, R., Hugueny, B., Meynard, C.N., Barhoumi, C., Barbet-Massin, M., & Bellard, C., 2018. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45(9), 1994-2002.
Lobo, J.M., & Tognelli, M.F., 2011. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J. Nat. Conserv. 19(1), 1-7.
Ma, J., & Wang, P., 2021. Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: a review. Sci. Total Environ. 754, 141889. PMid:32920383.
Mantzouki, E., Lürling, M., Fastner, J., de Senerpont Domis, L., Wilk-Woźniak, E., Koreivienė, J., Seelen, L., Teurlincx, S., Verstijnen, Y., Krztoń, W., Walusiak, E., Karosienė, J., Kasperovičienė, J., Savadova, K., Vitonytė, I., Cillero-Castro, C., Budzyńska, A., Goldyn, R., Kozak, A., Rosińska, J., Szeląg-Wasielewska, E., Domek, P., Jakubowska-Krepska, N., Kwasizur, K., Messyasz, B., Pełechaty, A., Pełechaty, M., Kokocinski, M., García-Murcia, A., Real, M., Romans, E., Noguero-Ribes, J., Duque, D.P., Fernández-Morán, E., Karakaya, N., Häggqvist, K., Demir, N., Beklioğlu, M., Filiz, N., Levi, E.E., Iskin, U., Bezirci, G., Tavşanoğlu, Ü.N., Özhan, K., Gkelis, S., Panou, M., Fakioglu, Ö., Avagianos, C., Kaloudis, T., Çelik, K., Yilmaz, M., Marcé, R., Catalán, N., Bravo, A.G., Buck, M., Colom-Montero, W., Mustonen, K., Pierson, D., Yang, Y., Raposeiro, P.M., Gonçalves, V., Antoniou, M.G., Tsiarta, N., McCarthy, V., Perello, V.C., Feldmann, T., Laas, A., Panksep, K., Tuvikene, L., Gagala, I., Mankiewicz-Boczek, J., Yağcı, M.A., Çınar, Ş., Çapkın, K., Yağcı, A., Cesur, M., Bilgin, F., Bulut, C., Uysal, R., Obertegger, U., Boscaini, A., Flaim, G., Salmaso, N., Cerasino, L., Richardson, J., Visser, P.M., Verspagen, J.M.H., Karan, T., Soylu, E.N., Maraşlıoğlu, F., Napiórkowska-Krzebietke, A., Ochocka, A., Pasztaleniec, A., Antão-Geraldes, A.M., Vasconcelos, V., Morais, J., Vale, M., Köker, L., Akçaalan, R., Albay, M., Špoljarić Maronić, D., Stević, F., Žuna Pfeiffer, T., Fonvielle, J., Straile, D., Rothhaupt, K.O., Hansson, L.A., Urrutia-Cordero, P., Bláha, L., Geriš, R., Fránková, M., Koçer, M.A.T., Alp, M.T., Remec-Rekar, S., Elersek, T., Triantis, T., Zervou, S.K., Hiskia, A., Haande, S., Skjelbred, B., Madrecka, B., Nemova, H., Drastichova, I., Chomova, L., Edwards, C., Sevindik, T.O., Tunca, H., Önem, B., Aleksovski, B., Krstić, S., Vucelić, I.B., Nawrocka, L., Salmi, P., Machado-Vieira, D., de Oliveira, A.G., Delgado-Martín, J., García, D., Cereijo, J.L., Gomà, J., Trapote, M.C., Vegas-Vilarrúbia, T., Obrador, B., Grabowska, M., Karpowicz, M., Chmura, D., Úbeda, B., Gálvez, J.Á., Özen, A., Christoffersen, K.S., Warming, T.P., Kobos, J., Mazur-Marzec, H., Pérez-Martínez, C., Ramos-Rodríguez, E., Arvola, L., Alcaraz-Párraga, P., Toporowska, M., Pawlik-Skowronska, B., Niedźwiecki, M., Pęczuła, W., Leira, M., Hernández, A., Moreno-Ostos, E., Blanco, J.M., Rodríguez, V., Montes-Pérez, J.J., Palomino, R.L., Rodríguez-Pérez, E., Carballeira, R., Camacho, A., Picazo, A., Rochera, C., Santamans, A.C., Ferriol, C., Romo, S., Soria, J.M., Dunalska, J., Sieńska, J., Szymański, D., Kruk, M., Kostrzewska-Szlakowska, I., Jasser, I., Žutinić, P., Gligora Udovič, M., Plenković-Moraj, A., Frąk, M., Bańkowska-Sobczak, A., Wasilewicz, M., Özkan, K., Maliaka, V., Kangro, K., Grossart, H.P., Paerl, H.W., Carey, C.C., & Ibelings, B.W., 2018. Temperature Effects explain continental scale distribution of cyanobacterial toxins. Toxins (Basel) 10(4), 156. PMid:29652856.
Marrone, B.L., Banerjee, S., Talapatra, A., Gonzalez-Esquer, C.R., & Pilania, G., 2024. Toward a Predictive Understanding of Cyanobacterial Harmful Algal Blooms through AI Integration of Physical, Chemical, and Biological Data. ACS ES T Water 4(3), 844-858. PMid:38482341.
Meriggi, C., Drakare, S., Polaina Lacambra, E., Johnson, R.K., & Laugen, A.T., 2022. Species distribution models as a tool for early detection of the invasive
Naselli-Flores, L., & Padisák, J., 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia. 764, 303-313. http://doi.org/10.1007/s10750-015-2519-3.
Nõges, P., Nõges, T., Ghiani, M., Sena, F., Fresner, R., Friedl, M., & Mildner, J., 2011. Increased nutrient loading and rapid changes in phytoplankton expected with climate change in stratified South European lakes: sensitivity of lakes with different trophic state and catchment properties. Hydrobiologia 667(1), 255-270.
Padisák, J., & Naselli-Flores, L., 2021. Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia 848(1), 157-176.
Padisák, J., 1997.
Padisák, J., Vasas, G., & Borics, G., 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764(1), 3-27.
Paerl, H.W., & Huisman, J., 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1(1), 27-37. http://doi.org/10.1111/j.1758-2229.2008.00004.x.
Paerl, H.W., & Paul, V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46(5), 1349-1363. PMid:21893330.
Pagni, R.L., de Falco, P.B., & Dos Santos, A.C.A., 2020. Autecology of
Peterson, A.T., 2011. Ecological niche conservatism: a time-structured review of evidence. J. Biogeogr. 38(5), 817-827.
Phillips, S.J., & Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161-175.
Phillips, S.J., Anderson, R.P., & Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3-4), 231-259.
Poniedziałek, B., Rzymski, P., & Kokociński, M., 2012. Cylindrospermopsin: water-linked potential threat to human health in Europe. Environ. Toxicol. Pharmacol. 34(3), 651-660. http://doi.org/10.1016/j.etap.2012.08.005.
Prakash, R., Lee, J., Kim, S.H., Lee, H.Y., & Lee, J., 2024. Insight into the interaction between ionic nanobubbles and cyanobacteria: elucidating the role of surfactant and zeta potential in the inactivation of harmful cyanobacteria. Chem. Eng. Sci. 287, 119699.
Sellner, K.G., Doucette, G.J., & Kirkpatrick, G.J., 2003. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30(7), 383-406. PMid:12898390.
Simić, S.B., Dordević, N.B., & Milošević, D., 2017. The relationship between the dominance of Cyanobacteria species and environmental variables in different seasons and after extreme precipitation. Fundam. Appl. Limnol. 190(1), 1-11.
Sistema de Acompanhamento de Reservatórios - SAR, 2023. Dados [online]. Retrieved in 2025, March 31, from
Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115-1123. PMid:17850335.
Stockwell, J.D., Doubek, J.P., Adrian, R., Anneville, O., Carey, C.C., Carvalho, L., De Senerpont Domis, L.N., Dur, G., Frassl, M.A., Grossart, H.P., Ibelings, B.W., Lajeunesse, M.J., Lewandowska, A.M., Llames, M.E., Matsuzaki, S.I.S., Nodine, E.R., Nõges, P., Patil, V.P., Pomati, F., Rinke, K., Rudstam, L.G., Rusak, J.A., Salmaso, N., Seltmann, C.T., Straile, D., Thackeray, S.J., Thiery, W., Urrutia-Cordero, P., Venail, P., Verburg, P., Woolway, R.I., Zohary, T., Andersen, M.R., Bhattacharya, R., Hejzlar, J., Janatian, N., Kpodonu, A.T.N.K., Williamson, T.J., & Wilson, H.L., 2020. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26(5), 2756-2784. PMid:32133744.
Stumpf, R.P., Davis, T.W., Wynne, T.T., Graham, J.L., Loftin, K.A., Johengen, T.H., Gossiaux, D., Palladino, D., & Burtner, A., 2016. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160-173.
Tonk, L., Visser, P.M., Christiansen, G., Dittmann, E., Snelder, E.O.F.M., Wiedner, C., Mur, L.R., & Huisman, J., 2005. The microcystin composition of the cyanobacterium
Trenberth, K.E., Dai, A., Rasmussen, R.M., & Parsons, D.B., 2003. The changing character of precipitation. Forum 1205-1217.
Tuchyňa, J., & Haas, M., 2025. Impact of Climate Change-Driven Droughts on the Concentration of Heavy Metals and Other Elements in Freshwater Cyanobacteria of the Genus
VanDerWal, J., Shoo, L.P., Graham, C., & Williams, S.E., 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modell. 220(4), 589-594.
Vanhatalo, J., Veneranta, L., & Hudd, R., 2012. Species distribution modeling with Gaussian processes: a case study with the youngest stages of sea spawning whitefish (
Vieira, T.B., Pavanelli, C.S., Casatti, L., Smith, W.S., Benedito, E., Mazzoni, R., Sánchez-Botero, J.I., Garcez, D.S., Lima, S.M.Q., Pompeu, P.S., Agostinho, C.S., Montag, L.F.A., Zuanon, J., Aquino, P.P.U., Cetra, M., Tejerina-Garro, F.L., Duboc, L.F., Corrêa, R.C., Pérez-Mayorga, M.A., Brejão, G.L., Mateussi, N.T.B., Castro, M.A., Leitão, R.P., Mendonça, F.P., Silva, L.R.P.D., Frederico, R., & De Marco, P., 2018. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS One 13(9), e0204114. PMid:30231064.
Walter Helbling, E., Banaszak, A.T., & Villafañe, V.E., 2015. Global change feed-back inhibits cyanobacterial photosynthesis. Sci. Rep. 5, 14514. PMid:26415603.
Whittaker, R.J., Araujo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., & Willis, K.J., 2005. Conservation biogeography: assessment and prospect. Diversity Distrib., 11(1), 3-23.
Xiao, M., Willis, A., Burford, M.A., & Li, M., 2017. Review: a meta-analysis comparing cell-division and cell-adhesion in Microcystis colony formation. Harmful Algae. 67, 85-91. http://doi.org/10.1016/j.hal.2017.06.007.
Yang, Y., Chen, Y., Cai, F., Liu, X., Wang, Y., & Li, R., 2018. Toxicity-associated changes in the invasive cyanobacterium
Submitted date:
01/16/2024
Accepted date:
03/12/2025
Publication date:
05/07/2025