Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X0424
Acta Limnologica Brasiliensia
Artigo Original

Evaluating the growth potential of harmful cyanobacteria in aquatic environments under climate change scenarios

Avaliando o potencial de crescimento de cianobactérias nocivas em ambientes aquáticos em cenários de mudanças climáticas

Ariane Guimarães; Pablo Silva; Daniel Paiva Silva

Downloads: 1
Views: 32

Abstract

Aim: Neotropical freshwater environments face severe threats from climate change, posing significant risks to global water security. Extreme hydrological events, such as torrential rains and prolonged droughts, are expected to become more frequent and intense. These conditions increase the residence time of nutrients, especially phosphorus and nitrogen, favoring the proliferation of harmful cyanobacteria (cyanoHABs). Furthermore, cyanobacteria are competitive in environments with few nutrients and high CO2 concentrations. This feature exacerbates ecological and public health challenges, as these cyanobacteria can cause harmful algal blooms that contaminate water supplies and disrupt aquatic ecosystems. We aimed to evaluate the growth of cyanobacteria in specific regions concerning the prevalence of three representative species of cyanoHABs.

Methods: We used ecological niche modeling tools (ENMs) based on occurrence records from available databases to predict the distribution of the three most frequently representative species of cyanoHABs. We employed three different modeling methods: generalized linear models (GLM), Gaussian models (GAU), and maximum entropy (MXS).

Results: The potential distributions for the current scenario were consistent with known distributions for the modeled cyanoHABs in the ENMs results. Still, we identified new areas of research for future scenarios.

Conclusions: The variations we observed indicate that the impacts of climate change vary regionally, affecting the future fitness of cyanobacteria. In the short term, they may maintain stable fitness, but a significant reduction is expected in the long term due to high temperatures. This result highlights the urgent need for mitigating actions to protect aquatic ecosystems.

Keywords

ecological niche model; cyanoHABs; Microcystis aeruginosa; Planktothrix agardhii; Raphidiopsis raciborskii; toxins

Resumo

Objetivo: Os ambientes neotropicais de água doce enfrentam graves ameaças das mudanças climáticas, representando riscos significativos para a segurança hídrica global. Espera-se que eventos hidrológicos extremos, como chuvas torrenciais e secas prolongadas, se tornem mais frequentes e intensos. Essas condições aumentam o tempo de residência dos nutrientes, principalmente fósforo e nitrogênio, favorecendo a proliferação de cianobactérias nocivas (cianoHABs). Além disso, as cianobactérias são competitivas em ambientes com poucos nutrientes e altas concentrações de CO2. Esta característica agrava os desafios ecológicos e de saúde pública, uma vez que estas cianobactérias podem causar proliferação de algas nocivas que contaminam o abastecimento de água e perturbam os ecossistemas aquáticos. Nosso objetivo foi avaliar o crescimento de cianobactérias em regiões específicas quanto à prevalência de três espécies representativas de cianoHABs.


Métodos: Utilizamos ferramentas de modelagem de nicho ecológico (ENMs) baseadas em registros de ocorrência de bancos de dados disponíveis para prever a distribuição das três espécies mais frequentemente representativas de cianoHABs. Empregamos três métodos de modelagem diferentes: modelos lineares generalizados (GLM), modelos gaussianos (GAU) e entropia máxima (MXS).

Resultados: As distribuições potenciais para o cenário atual foram consistentes com as distribuições conhecidas para os cianoHABs modelados nos resultados dos ENMs. Ainda assim, identificamos novas áreas de pesquisa para cenários futuros.

Conclusões: As variações que observamos indicam que os impactos das mudanças climáticas variam regionalmente, afetando a aptidão futura das cianobactérias. No curto prazo, podem manter a aptidão estável, mas espera-se uma redução significativa no longo prazo devido às altas temperaturas. Este resultado destaca a necessidade urgente de ações mitigadoras para proteger os ecossistemas aquáticos.

Palavras-chave

modelo de nicho ecológico; cyanoHABs; Microcystis aeruginosa; Planktothrix agardhii; Raphidiopsis raciborskii; toxinas

Referências

Andrade, A.F.A., Velazco, S.J.E., & De Marco Júnior, P., 2020. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Model. Softw. 125, 104615. http://doi.org/10.1016/j.envsoft.2019.104615.

Araújo, M.B., & New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22(1), 42-47. PMid:17011070. http://doi.org/10.1016/j.tree.2006.09.010.

Booth, T.H., Nix, H.A., Busby, J.R., & Hutchinson, M.F., 2014. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20(1), 1-9. http://doi.org/10.1111/ddi.12144.

Budai, P., & Clement, A., 2007. Estimation of nutrient load from urban diffuse sources: experiments with runoff sampling at pilot catchments of Lake Balaton, Hungary. Water Sci. Technol. 56(1), 295-302. PMid:17711027. http://doi.org/10.2166/wst.2007.464.

Cameron, E.S., Krishna, A., Emelko, M.B., & Müller, K.M., 2024. Sporadic diurnal fluctuations of cyanobacterial populations in oligotrophic temperate systems can prevent accurate characterization of change and risk in aquatic systems. Water Res. 252, 121199. PMid:38330712. http://doi.org/10.1016/j.watres.2024.121199.

Chapra, S.C., Boehlert, B., Fant, C., Bierman Junior, V.J., Henderson, J., Mills, D., Mas, D.M.L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K.M., & Paerl, H.W., 2017. Climate change impacts on harmful algal blooms in u.s. freshwaters: a screening-level assessment. Environ. Sci. Technol. 51(16), 8933-8943. PMid:28650153. http://doi.org/10.1021/acs.est.7b01498.

Charlton, M.B., Bowes, M.J., Hutchins, M.G., Orr, H.G., Soley, R., & Davison, P., 2018. Mapping eutrophication risk from climate change: future phosphorus concentrations in English rivers. Sci. Total Environ. 613–614, 1510-1526. PMid:28886914. http://doi.org/10.1016/j.scitotenv.2017.07.218.

De Marco, P., & Nóbrega, C.C., 2018. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS One 13(9), e0202403. PMid:30204749. http://doi.org/10.1371/journal.pone.0202403.

Diniz Filho, J.A.F., Ferro, V.G., Santos, T., Nabout, J.C., Dobrovolski, R., & De Marco Jr, P., 2010. The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of Utetheisa ornatrix (Lepidoptera, Arctiidae). Rev. Bras. Entomol. 54(3), 339-349. http://doi.org/10.1590/S0085-56262010000300001.

Domisch, S., Amatulli, G., & Jetz, W., 2015. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2(1), 150073. PMid:26647296. http://doi.org/10.1038/sdata.2015.73.

Fick, S.E., & Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302-4315. https://doi.org/10.1002/joc.5086.

Global Biological Information Facility - GBIF, 2023. Global biodiversity information facility [online]. Retrieved in 2023, May 15, from http://www.gbif.org.

Goncharenko, I., Krakhmalnyi, M., Velikova, V., Ascencio, E., & Krakhmalnyi, A., 2021. Ecological niche modeling of toxic dinoflagellate Prorocentrum cordatum in the Black Sea. Ecohydrol. Hydrobiol. 21(4), 747-759. http://doi.org/10.1016/j.ecohyd.2021.05.002.

Guimarães, A., da Silva, P.H., Carneiro, F.M., & Silva, D.P., 2020. Using distribution models to estimate blooms of phytosanitary cyanobacteria in Brazil. Biota Neotrop. 20(2), e20190756. https://doi.org/10.1590/1676-0611-bn-2019-0756.

Guisan, A., Edwards, T.C., & Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157(2-3), 89-100. http://doi.org/10.1016/S0304-3800(02)00204-1.

Hamilton, C., 2018. Climate change. In: Juergensmeyer, M., Sassen, S., Steger, M.B., & Faessel, V., eds, The Oxford Handbook of Global Studies. Oxônia: Oxford University Press, 631-646. http://doi.org/10.1093/oxfordhb/9780190630577.013.23.

Hong, Y., Steinman, A., Biddanda, B., Rediske, R., & Fahnenstiel, G., 2006. Occurrence of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii in Mona and Muskegon Lakes, Michigan. J. Great Lakes Res. 32(3), 645-652. https://doi.org/10.3394/0380-1330(2006)32[645:OOTTCC]2.0.CO;2.

Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124. http://doi.org/10.1038/s41579-018-0040-1.

Hunter, P.D., Tyler, A.N., Carvalho, L., Codd, G.A., & Maberly, S.C., 2010. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ. 114(11), 2705-2718. http://doi.org/10.1016/j.rse.2010.06.006.

Igwaran, A., Kayode, A.J., Moloantoa, K.M., Khetsha, Z.P., & Unuofin, J.O., 2024. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 235(1), 1-26. http://doi.org/10.1007/s11270-023-06782-y.

Intergovernamental Panel on Climate Change, 2022. Climate Change 2022 - Impacts, Adaptation and Vulnerability. Working Group II contribution to the Sixth Assessment Report of the Intergovernamental Panel on Climate Change. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009325844.

Kimambo, O.N., Gumbo, J.R., & Chikoore, H., 2019. The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. Heliyon 5(3), e01312. PMid:30899834. http://doi.org/10.1016/j.heliyon.2019.e01312.

Kimambo, O.N., Gumbo, J.R., Msagati, T.A.M., & Chikoore, H., 2022. Harmful algae in aquaculture systems in Ngerengere Catchment, Morogoro, Tanzania: descriptive community structure and environmental concerns. Phys. Chem. Earth Parts ABC 125, 103103. http://doi.org/10.1016/j.pce.2021.103103.

Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J.R., 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295-335.

Leroy, B., Delsol, R., Hugueny, B., Meynard, C.N., Barhoumi, C., Barbet-Massin, M., & Bellard, C., 2018. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45(9), 1994-2002. http://doi.org/10.1111/jbi.13402.

Lobo, J.M., & Tognelli, M.F., 2011. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J. Nat. Conserv. 19(1), 1-7. http://doi.org/10.1016/j.jnc.2010.03.002.

Ma, J., & Wang, P., 2021. Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: a review. Sci. Total Environ. 754, 141889. PMid:32920383. http://doi.org/10.1016/j.scitotenv.2020.141889.

Mantzouki, E., Lürling, M., Fastner, J., de Senerpont Domis, L., Wilk-Woźniak, E., Koreivienė, J., Seelen, L., Teurlincx, S., Verstijnen, Y., Krztoń, W., Walusiak, E., Karosienė, J., Kasperovičienė, J., Savadova, K., Vitonytė, I., Cillero-Castro, C., Budzyńska, A., Goldyn, R., Kozak, A., Rosińska, J., Szeląg-Wasielewska, E., Domek, P., Jakubowska-Krepska, N., Kwasizur, K., Messyasz, B., Pełechaty, A., Pełechaty, M., Kokocinski, M., García-Murcia, A., Real, M., Romans, E., Noguero-Ribes, J., Duque, D.P., Fernández-Morán, E., Karakaya, N., Häggqvist, K., Demir, N., Beklioğlu, M., Filiz, N., Levi, E.E., Iskin, U., Bezirci, G., Tavşanoğlu, Ü.N., Özhan, K., Gkelis, S., Panou, M., Fakioglu, Ö., Avagianos, C., Kaloudis, T., Çelik, K., Yilmaz, M., Marcé, R., Catalán, N., Bravo, A.G., Buck, M., Colom-Montero, W., Mustonen, K., Pierson, D., Yang, Y., Raposeiro, P.M., Gonçalves, V., Antoniou, M.G., Tsiarta, N., McCarthy, V., Perello, V.C., Feldmann, T., Laas, A., Panksep, K., Tuvikene, L., Gagala, I., Mankiewicz-Boczek, J., Yağcı, M.A., Çınar, Ş., Çapkın, K., Yağcı, A., Cesur, M., Bilgin, F., Bulut, C., Uysal, R., Obertegger, U., Boscaini, A., Flaim, G., Salmaso, N., Cerasino, L., Richardson, J., Visser, P.M., Verspagen, J.M.H., Karan, T., Soylu, E.N., Maraşlıoğlu, F., Napiórkowska-Krzebietke, A., Ochocka, A., Pasztaleniec, A., Antão-Geraldes, A.M., Vasconcelos, V., Morais, J., Vale, M., Köker, L., Akçaalan, R., Albay, M., Špoljarić Maronić, D., Stević, F., Žuna Pfeiffer, T., Fonvielle, J., Straile, D., Rothhaupt, K.O., Hansson, L.A., Urrutia-Cordero, P., Bláha, L., Geriš, R., Fránková, M., Koçer, M.A.T., Alp, M.T., Remec-Rekar, S., Elersek, T., Triantis, T., Zervou, S.K., Hiskia, A., Haande, S., Skjelbred, B., Madrecka, B., Nemova, H., Drastichova, I., Chomova, L., Edwards, C., Sevindik, T.O., Tunca, H., Önem, B., Aleksovski, B., Krstić, S., Vucelić, I.B., Nawrocka, L., Salmi, P., Machado-Vieira, D., de Oliveira, A.G., Delgado-Martín, J., García, D., Cereijo, J.L., Gomà, J., Trapote, M.C., Vegas-Vilarrúbia, T., Obrador, B., Grabowska, M., Karpowicz, M., Chmura, D., Úbeda, B., Gálvez, J.Á., Özen, A., Christoffersen, K.S., Warming, T.P., Kobos, J., Mazur-Marzec, H., Pérez-Martínez, C., Ramos-Rodríguez, E., Arvola, L., Alcaraz-Párraga, P., Toporowska, M., Pawlik-Skowronska, B., Niedźwiecki, M., Pęczuła, W., Leira, M., Hernández, A., Moreno-Ostos, E., Blanco, J.M., Rodríguez, V., Montes-Pérez, J.J., Palomino, R.L., Rodríguez-Pérez, E., Carballeira, R., Camacho, A., Picazo, A., Rochera, C., Santamans, A.C., Ferriol, C., Romo, S., Soria, J.M., Dunalska, J., Sieńska, J., Szymański, D., Kruk, M., Kostrzewska-Szlakowska, I., Jasser, I., Žutinić, P., Gligora Udovič, M., Plenković-Moraj, A., Frąk, M., Bańkowska-Sobczak, A., Wasilewicz, M., Özkan, K., Maliaka, V., Kangro, K., Grossart, H.P., Paerl, H.W., Carey, C.C., & Ibelings, B.W., 2018. Temperature Effects explain continental scale distribution of cyanobacterial toxins. Toxins (Basel) 10(4), 156. PMid:29652856. http://doi.org/10.3390/toxins10040156.

Marrone, B.L., Banerjee, S., Talapatra, A., Gonzalez-Esquer, C.R., & Pilania, G., 2024. Toward a Predictive Understanding of Cyanobacterial Harmful Algal Blooms through AI Integration of Physical, Chemical, and Biological Data. ACS ES T Water 4(3), 844-858. PMid:38482341. http://doi.org/10.1021/acsestwater.3c00369.

Meriggi, C., Drakare, S., Polaina Lacambra, E., Johnson, R.K., & Laugen, A.T., 2022. Species distribution models as a tool for early detection of the invasive Raphidiopsis raciborskii in European lakes. Harmful Algae 113, 102202. PMid:35287933. http://doi.org/10.1016/j.hal.2022.102202.

Naselli-Flores, L., & Padisák, J., 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia. 764, 303-313. http://doi.org/10.1007/s10750-015-2519-3.

Nõges, P., Nõges, T., Ghiani, M., Sena, F., Fresner, R., Friedl, M., & Mildner, J., 2011. Increased nutrient loading and rapid changes in phytoplankton expected with climate change in stratified South European lakes: sensitivity of lakes with different trophic state and catchment properties. Hydrobiologia 667(1), 255-270. http://doi.org/10.1007/s10750-011-0649-9.

Padisák, J., & Naselli-Flores, L., 2021. Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia 848(1), 157-176. http://doi.org/10.1007/s10750-020-04353-4.

Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl. Monogr. Beitr. 107(4), 563-593.

Padisák, J., Vasas, G., & Borics, G., 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764(1), 3-27. http://doi.org/10.1007/s10750-015-2259-4.

Paerl, H.W., & Huisman, J., 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1(1), 27-37. http://doi.org/10.1111/j.1758-2229.2008.00004.x.

Paerl, H.W., & Paul, V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46(5), 1349-1363. PMid:21893330. http://doi.org/10.1016/j.watres.2011.08.002.

Pagni, R.L., de Falco, P.B., & Dos Santos, A.C.A., 2020. Autecology of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Acta Limnol. Bras. 32, e24. https://doi.org/10.1590/S2179-975X10317.

Peterson, A.T., 2011. Ecological niche conservatism: a time-structured review of evidence. J. Biogeogr. 38(5), 817-827. http://doi.org/10.1111/j.1365-2699.2010.02456.x.

Phillips, S.J., & Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161-175. http://doi.org/10.1111/j.0906-7590.2008.5203.x.

Phillips, S.J., Anderson, R.P., & Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3-4), 231-259. http://doi.org/10.1016/j.ecolmodel.2005.03.026.

Poniedziałek, B., Rzymski, P., & Kokociński, M., 2012. Cylindrospermopsin: water-linked potential threat to human health in Europe. Environ. Toxicol. Pharmacol. 34(3), 651-660. http://doi.org/10.1016/j.etap.2012.08.005.

Prakash, R., Lee, J., Kim, S.H., Lee, H.Y., & Lee, J., 2024. Insight into the interaction between ionic nanobubbles and cyanobacteria: elucidating the role of surfactant and zeta potential in the inactivation of harmful cyanobacteria. Chem. Eng. Sci. 287, 119699. http://doi.org/10.1016/j.ces.2023.119699.

Sellner, K.G., Doucette, G.J., & Kirkpatrick, G.J., 2003. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30(7), 383-406. PMid:12898390. http://doi.org/10.1007/s10295-003-0074-9.

Simić, S.B., Dordević, N.B., & Milošević, D., 2017. The relationship between the dominance of Cyanobacteria species and environmental variables in different seasons and after extreme precipitation. Fundam. Appl. Limnol. 190(1), 1-11. http://doi.org/10.1127/fal/2017/0975.

Sistema de Acompanhamento de Reservatórios - SAR, 2023. Dados [online]. Retrieved in 2025, March 31, from https://dados.gov.br/dados/conjuntos-dados/sistema-de-acompanhamento-de-reservatorios-sistema-interligado-nacional1.

Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115-1123. PMid:17850335. http://doi.org/10.1111/j.1461-0248.2007.01107.x.

Stockwell, J.D., Doubek, J.P., Adrian, R., Anneville, O., Carey, C.C., Carvalho, L., De Senerpont Domis, L.N., Dur, G., Frassl, M.A., Grossart, H.P., Ibelings, B.W., Lajeunesse, M.J., Lewandowska, A.M., Llames, M.E., Matsuzaki, S.I.S., Nodine, E.R., Nõges, P., Patil, V.P., Pomati, F., Rinke, K., Rudstam, L.G., Rusak, J.A., Salmaso, N., Seltmann, C.T., Straile, D., Thackeray, S.J., Thiery, W., Urrutia-Cordero, P., Venail, P., Verburg, P., Woolway, R.I., Zohary, T., Andersen, M.R., Bhattacharya, R., Hejzlar, J., Janatian, N., Kpodonu, A.T.N.K., Williamson, T.J., & Wilson, H.L., 2020. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26(5), 2756-2784. PMid:32133744. http://doi.org/10.1111/gcb.15033.

Stumpf, R.P., Davis, T.W., Wynne, T.T., Graham, J.L., Loftin, K.A., Johengen, T.H., Gossiaux, D., Palladino, D., & Burtner, A., 2016. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160-173. http://doi.org/10.1016/j.hal.2016.01.005.

Tonk, L., Visser, P.M., Christiansen, G., Dittmann, E., Snelder, E.O.F.M., Wiedner, C., Mur, L.R., & Huisman, J., 2005. The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl. Environ. Microbiol. 71(9), 5177-5181. PMid:16151102. http://doi.org/10.1128/AEM.71.9.5177-5181.2005.

Trenberth, K.E., Dai, A., Rasmussen, R.M., & Parsons, D.B., 2003. The changing character of precipitation. Forum 1205-1217. http://doi.org/10.1175/BAMS-84-9-1205.

Tuchyňa, J., & Haas, M., 2025. Impact of Climate Change-Driven Droughts on the Concentration of Heavy Metals and Other Elements in Freshwater Cyanobacteria of the Genus Oscillatoriales in the Tatra Mountains. Sustainability (Basel) 17(3), 1119. http://doi.org/10.3390/su17031119.

VanDerWal, J., Shoo, L.P., Graham, C., & Williams, S.E., 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modell. 220(4), 589-594. http://doi.org/10.1016/j.ecolmodel.2008.11.010.

Vanhatalo, J., Veneranta, L., & Hudd, R., 2012. Species distribution modeling with Gaussian processes: a case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae. Ecol. Model. 228, 49-58. http://doi.org/10.1016/j.ecolmodel.2011.12.025.

Vieira, T.B., Pavanelli, C.S., Casatti, L., Smith, W.S., Benedito, E., Mazzoni, R., Sánchez-Botero, J.I., Garcez, D.S., Lima, S.M.Q., Pompeu, P.S., Agostinho, C.S., Montag, L.F.A., Zuanon, J., Aquino, P.P.U., Cetra, M., Tejerina-Garro, F.L., Duboc, L.F., Corrêa, R.C., Pérez-Mayorga, M.A., Brejão, G.L., Mateussi, N.T.B., Castro, M.A., Leitão, R.P., Mendonça, F.P., Silva, L.R.P.D., Frederico, R., & De Marco, P., 2018. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS One 13(9), e0204114. PMid:30231064. http://doi.org/10.1371/journal.pone.0204114.

Walter Helbling, E., Banaszak, A.T., & Villafañe, V.E., 2015. Global change feed-back inhibits cyanobacterial photosynthesis. Sci. Rep. 5, 14514. PMid:26415603. http://doi.org/10.1038/srep14514.

Whittaker, R.J., Araujo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., & Willis, K.J., 2005. Conservation biogeography: assessment and prospect. Diversity Distrib., 11(1), 3-23. http://doi.org/10.1111/j.1366-9516.2005.00143.x.

Xiao, M., Willis, A., Burford, M.A., & Li, M., 2017. Review: a meta-analysis comparing cell-division and cell-adhesion in Microcystis colony formation. Harmful Algae. 67, 85-91. http://doi.org/10.1016/j.hal.2017.06.007.

Yang, Y., Chen, Y., Cai, F., Liu, X., Wang, Y., & Li, R., 2018. Toxicity-associated changes in the invasive cyanobacterium Cylindrospermopsis raciborskii in response to nitrogen fluctuations. Environ. Pollut. 237, 1041-1049. PMid:29153475. http://doi.org/10.1016/j.envpol.2017.11.024.
 


Submetido em:
16/01/2024

Aceito em:
12/03/2025

Publicado em:
07/05/2025

681ba67ca95395271671bc98 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections