Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20230050
Polímeros: Ciência e Tecnologia
Review Article

Analytical approaches to fiber-reinforced polymer composites: a short review

Marcia Murakoshi Takematsu; Rita de Cássia Lazzarini Dutra

Downloads: 0
Views: 277

Abstract

A variety of fiber-reinforced polymer (FRP) has been described in literature, with a considerable subset of studies focused on fiber surface treatment (sizing), performance enhancement of matrix and fibers both synthetic and natural, and development of more ecologically sustainable composites. The present review discusses the different types of fibers and matrices and their applications, depending on the chemical and mechanical properties of their composites. In order to evaluate the performance of FRP composites and explore the characteristics of the involved materials, some analytical techniques are considered paramount, such as thermal analysis, microscopy, Fourier transform-infrared spectroscopy (FT-IR), and others. On this basis, this review addresses the state-of-the-art of material characterization methodologies, provides a comprehensive overview of different types of FRP found in literature, as well as links the analytical techniques with the main applications contributing to future studies and research in this area.

 

 

Keywords

analytical techniques, composite, fiber, polymer

References

1 Hui, C., Liu, Z., Phoenix, S. L., King, D. R., Cui, W., Huang, Y., & Gong, J. P. (2020). Mechanical behavior of unidirectional fiber reinforced soft composites. Extreme Mechanics Letters, 35, 100642. http://dx.doi.org/10.1016/j.eml.2020.100642.

2 Gouanvé, F., Marais, S., Bessadok, A., Langevin, D., & Métayer, M. (2007). Kinetics of water sorption in flax and PET fibers. European Polymer Journal, 43(2), 586-598. http://dx.doi.org/10.1016/j.eurpolymj.2006.10.023.

3 Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Composites. Part B, Engineering, 174, 106956. http://dx.doi.org/10.1016/j.compositesb.2019.106956.

4 Hofstätter, T., Pedersen, D. B., Tosello, G., & Hansen, H. N. (2017). State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies. Journal of Reinforced Plastics and Composites, 36(15), 1061-1073. http://dx.doi.org/10.1177/0731684417695648.

5 Chavhan, G. R., & Wankhade, L. N. (2020). Improvement of the mechanical properties of hybrid composites prepared by fibers, fiber-metals, and nano-filler particles-A review. Materials Today: Proceedings, 27(Part 1), 72-82. http://dx.doi.org/10.1016/j.matpr.2019.08.240.

6 Suman, J. N., Kathi, J., & Tammishetti, S. (2005). Thermoplastic modification of monomeric and partially polymerized Bisphenol A dicyanate ester. European Polymer Journal, 41(12), 2963-2972. http://dx.doi.org/10.1016/j.eurpolymj.2005.06.006.

7 Pihtili, H. (2009). An experimental investigation of wear of glass fibre-epoxy resin and glass fibre-polyester resin composite materials. European Polymer Journal, 45(1), 149-154. http://dx.doi.org/10.1016/j.eurpolymj.2008.10.006.

8 Suresh, G., & Jayakumari, L. S. (2015). Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks. Polimeros: Ciência e Tecnologia, 25(1), 49-57. http://dx.doi.org/10.1590/0104-1428.1650.

9 Yuan, H., Wang, C., Zhang, S., & Lin, X. (2012). Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite. Applied Surface Science, 259, 288-293. http://dx.doi.org/10.1016/j.apsusc.2012.07.034.

10 Sanman, S., Manjunath, A., Prashanth, K. P., Shadakshari, R., & Sunil, S. K. (2023). An experimental study on two body abrasive wear behavior of natural fiber reinforced hybrid polymer matrix composites using Taguchi analysis. Materials Today: Proceedings, 72(Part 4), 2021-2026. http://dx.doi.org/10.1016/j.matpr.2022.07.400.

11 Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41(2), 143-151. http://dx.doi.org/10.1016/j.paerosci.2005.02.004.

12 Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites: feasibiliy study for sustainable automotive industries. In D. Verma, E. Fortunati, S. Jain, & X. Zhang (Eds.), Biomass, biopolymer-based materials, and bioenergy: construction, biomedical, and other industrial applications (pp. 103–122). UK: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102426-3.00006-0

13 Raju, A., & Shanmugaraja, M. (2021). Recent researches in fiber reinforced composite materials: a review. Materials Today: Proceedings, 46(Part 19), 9291-9296. http://dx.doi.org/10.1016/j.matpr.2020.02.141.

14 Kerni, L., Singh, S., Patnaik, A., & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today: Proceedings, 28(Part 3), 1616-1621. http://dx.doi.org/10.1016/j.matpr.2020.04.851.

15 Chaudhary, V., & Ahmad, F. (2020). A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polymer Testing, 91, 106792. http://dx.doi.org/10.1016/j.polymertesting.2020.106792.

16 Mahesh, V., Joladarashi, S., & Kulkarni, S. M. (2021). A comprehensive review on material selection for polymer matrix composites subjected to impact load. Defence Technology, 17(1), 257-277. http://dx.doi.org/10.1016/j.dt.2020.04.002.

17 Pukánszky, B. (2005). Interfaces and interphases in multicomponent materials: Past, present, future. European Polymer Journal, 41(4), 645-662. http://dx.doi.org/10.1016/j.eurpolymj.2004.10.035.

18 Krouit, M., Bras, J., & Belgacem, M. N. (2008). Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. European Polymer Journal, 44(12), 4074-4081. http://dx.doi.org/10.1016/j.eurpolymj.2008.09.016.

19 Wolski, K., Cichosz, S., & Masek, A. (2019). Surface hydrophobisation of lignocellulosic waste for the preparation of biothermoelastoplastic composites. European Polymer Journal, 118, 481-491. http://dx.doi.org/10.1016/j.eurpolymj.2019.06.026.

20 Tribot, A., Amer, G., Alio, M. A., Baynast, H., Delattre, C., Pons, A., Mathias, J.-D., Callois, J.-M., Vial, C., Michaud, P., & Dussap, C.-G. (2019). Wood-lignin: supply, extraction processes and use as bio-based material. European Polymer Journal, 112, 228-240. http://dx.doi.org/10.1016/j.eurpolymj.2019.01.007.

21 Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1667. http://dx.doi.org/10.3390/polym11101667. PMid:31614875.

22 Picha, K., & Samuel, J. (2018). A model-based prediction of droplet shape evolution during additive manufacturing of aligned fiber-reinforced soft composites. Journal of Manufacturing Processes, 32, 816-827. http://dx.doi.org/10.1016/j.jmapro.2018.03.012.

23 Alemour, B., Badran, O., & Hassan, M. R. (2019). A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. Journal of Aerospace Technology and Management, 11, e1919. http://dx.doi.org/10.5028/jatm.v11.1022.

24 Mgbemena, C. O., Li, D., Lin, M.-F., Liddel, P. D., Katnam, K. B., Kumar, V. T., & Nezhad, H. Y. (2018). Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: a review of scientific challenges. Composites. Part A, Applied Science and Manufacturing, 115, 88-103. http://dx.doi.org/10.1016/j.compositesa.2018.09.012.

25 Szabó, L., Milotskyi, R., Fujie, T., Tsukegi, T., Wada, N., Ninomiya, K., & Takahashi, K. (2019). Short carbon fiber reinforced polymers: utilizing lignin to engineer potentially sustainable resource-based biocomposites. Frontiers in Chemistry, 7, 757. http://dx.doi.org/10.3389/fchem.2019.00757. PMid:31781540.

26 Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. http://dx.doi.org/10.1016/j.eurpolymj.2013.01.019.

27 Zindani, D., & Kumar, K. (2019). An insight into additive manufacturing of fiber reinforced polymer composite. International Journal of Lightweight Materials and Manufacture, 2(4), 267-278. http://dx.doi.org/10.1016/j.ijlmm.2019.08.004.

28 Huang, Y., King, D. R., Sun, T. L., Nonoyama, T., Kurokawa, T., Nakajima, T., & Gong, J. P. (2017). Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Advanced Functional Materials, 27(9), 1605350. http://dx.doi.org/10.1002/adfm.201605350.

29 Spackman, C. C., Frank, C. R., Picha, K. C., & Samuel, J. (2016). 3D printing of fiber-reinforced soft composites: process study and material characterization. Journal of Manufacturing Processes, 23, 296-305. http://dx.doi.org/10.1016/j.jmapro.2016.04.006.

30 Illeperuma, W. R. K., Sun, J.-Y., Suo, Z., & Vlassak, J. J. (2014). Fiber-reinforced tough hydrogels. Extreme Mechanics Letters, 1, 90-96. http://dx.doi.org/10.1016/j.eml.2014.11.001.

31 Ren, D., Li, K., Chen, L., Chen, S., Han, M., Xu, M., & Liu, X. (2019). Modification on glass fiber surface and their improved properties of fiber-reinforced composites via enhanced interfacial properties. Composites. Part B, Engineering, 177, 107419. http://dx.doi.org/10.1016/j.compositesb.2019.107419.

32 Prasanna, S. M., Yogesha, K. B., Mruthunjaya, M., Shivakumar, B. P., Siddappa, P. N., & Raju, B. R. (2019). Mechanical and tribological characterization of hybrid composites: a review. Materials Today: Proceedings, 22(Part 4), 2351-2358.

33 Kim, M., Lee, T.-W., Park, S.-M., & Jeong, Y. G. (2019). Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Composites. Part A, Applied Science and Manufacturing, 123, 123-131. http://dx.doi.org/10.1016/j.compositesa.2019.05.011.

34 Lopes, B. J., & D’Almeida, J. R. M. (2019). Initial development and characterization of carbon fiber reinforced ABS for future Additive Manufacturing applications. Materials Today: Proceedings, 8(Part 3), 719-730. http://dx.doi.org/10.1016/j.matpr.2019.02.013.

35 Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. http://dx.doi.org/10.1016/j.compscitech.2010.01.022.

36 Mak, K., & Fam, A. (2019). Freeze-thaw cycling effect on tensile properties of unidirectional flax fiber reinforced polymers. Composites. Part B, Engineering, 174, 106960. http://dx.doi.org/10.1016/j.compositesb.2019.106960.

37 Yang, G., Park, M., & Park, S.-J. (2019). Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Composites Communications, 14, 34-42. http://dx.doi.org/10.1016/j.coco.2019.05.004.

38 Thomason, J. (2020). A review of the analysis and characterisation of polymeric glass fibre sizings. Polymer Testing, 85, 106421. http://dx.doi.org/10.1016/j.polymertesting.2020.106421.

39 Benin, S. R., Kannan, S., Bright, R. J., & Moses, A. J. (2020). A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Materials Today: Proceedings, 33(Part 1), 798-805. http://dx.doi.org/10.1016/j.matpr.2020.06.259.

40 Liu, T. Q., Liu, X., & Feng, P. (2020). A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites. Part B, Engineering, 191, 1079. http://dx.doi.org/10.1016/j.compositesb.2020.107958.

41 El-Shekeil, Y. A., Sapuan, S. M., Khalina, A., Zainudin, E. S., & Al-Shuja’a, O. M. (2012). Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polymer Letters, 6(12), 1032-1040. http://dx.doi.org/10.3144/expresspolymlett.2012.108.

42 Martin, N., & Youssef, G. (2018). Journal of the Mechanical Behavior of Biomedical Materials Dynamic properties of hydrogels and fi ber-reinforced hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 85, 194-200. http://dx.doi.org/10.1016/j.jmbbm.2018.06.008. PMid:29908487.

43 Wang, Z., Zhao, X.-L., Xian, G., Wu, G., Raman, R. K. S., & Al-Saadi, S. (2017). Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Construction & Building Materials, 156, 985-1004. http://dx.doi.org/10.1016/j.conbuildmat.2017.09.045.

44 Li, H., Zhang, K., Fan, X., Cheng, H., Xu, G., & Suo, H. (2019). Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites. Composites. Part B, Engineering, 173, 106910. http://dx.doi.org/10.1016/j.compositesb.2019.106910.

45 Newbury, D. E., & Ritchie, N. W. M. (2015). Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). Journal of Materials Science, 50(2), 493-518. http://dx.doi.org/10.1007/s10853-014-8685-2. PMid:26346887.

46 Canevarolo, S. V., Jr (2003). Técnicas de caracterização de polímeros. São Paulo: Artliber Editora.

47 Vijaya Kumar, K., Shailesh, P., Ranga Babu, J. A., & Kumar Puli, R. (2017). Preparation and characterization of GFRPC material. Materials Today: Proceedings, 4(2), 3053-3061. http://dx.doi.org/10.1016/j.matpr.2017.02.188.

48 Yu, A. Z., Rahimi, A. R., & Webster, D. C. (2018). High performance bio-based thermosets from dimethacrylated epoxidized sucrose soyate (DMESS). European Polymer Journal, 99, 202-211. http://dx.doi.org/10.1016/j.eurpolymj.2017.12.023.

49 Ferdosian, F., Zhang, Y., Yuan, Z., Anderson, M., & Xu, C. (2016). Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins. European Polymer Journal, 82, 153-165. http://dx.doi.org/10.1016/j.eurpolymj.2016.07.014.

50 Tesfaye, T., Sithole, B., Ramjugernath, D., & Mokhothu, T. (2018). Valorisation of chicken feathers: characterisation of thermal, mechanical and electrical properties. Sustainable Chemistry and Pharmacy, 9, 27-34. http://dx.doi.org/10.1016/j.scp.2018.05.003.

51 Wang, S., & ElGawady, M. A. (2019). Effects of hybrid water Immersion, environmental exposures, and axial load on the mechanical properties of concrete filled epoxy-based glass fiber reinforced polymer tubes. Construction & Building Materials, 194, 311-321. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.232.

52 Shubham, S. K., Purohit, R., Yadav, P. S., & Rana, R. S. (2019). Study of nano-fillers embedded in polymer matrix composites to enhance its properties: a review. Materials Today: Proceedings, 26(Part 2), 3024-3029.

53 Yee, R. Y., & Stephens, T. S. (1996). A TGA technique for determining graphite fiber content in epoxy composites. Thermochimica Acta, 272, 191-199. http://dx.doi.org/10.1016/0040-6031(95)02606-1.

54 Moon, C., Bang, B., Choi, W., Kang, G., & Park, S. (2005). A technique for determining fiber content in FRP by thermogravimetric analyzer. Polymer Testing, 24(3), 376-380. http://dx.doi.org/10.1016/j.polymertesting.2004.10.002.

55 Ghouti, H. A., Zegaoui, A., Derradji, M., Cai, W.-A., Wang, J., Liu, W.-B., & Dayo, A. Q. (2018). Multifunctional hybrid composites with enhanced mechanical and thermal properties based on polybenzoxazine and chopped Kevlar/carbon hybrid fibers. Polymers, 10(12), 1308. http://dx.doi.org/10.3390/polym10121308. PMid:30961233.

56 Mak, K., & Fam, A. (2020). The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers. Composites. Part B, Engineering, 183, 107645. http://dx.doi.org/10.1016/j.compositesb.2019.107645.

57 Rohman, A., Windarsih, A., Hossain, M. A. M., Johan, M. R., Ali, M. E., & Fadzilah, N. A. (2019). Application of near- and mid-infrared spectroscopy combined with chemometrics for discrimination and authentication of herbal products: a review. Journal of Applied Pharmaceutical Science, 9(3), 137-147. http://dx.doi.org/10.7324/JAPS.2019.90319.

58 Chua, C. Y. X., Liu, H.-C., Di Trani, N., Susnjar, A., Ho, J., Scorrano, G., Rhudy, J., Sizovs, A., Lolli, G., Hernandez, N., Nucci, M. C., Cicalo, R., Ferrari, M., & Grattoni, A. (2021). Carbon fiber reinforced polymers for implantable medical devices. Biomaterials, 271, 120719. http://dx.doi.org/10.1016/j.biomaterials.2021.120719. PMid:33652266.

59 Sanches, N. B., Pedro, R., Diniz, M. F., Mattos, E. C., Cassu, S. N., & Dutra, R. C. L. (2013). Infrared spectroscopy applied to materials used as thermal insulation and coatings. Journal of Aerospace Technology and Management, 5(4), 421-430. http://dx.doi.org/10.5028/jatm.v5i4.265.

60 Magalhães, R. F., Barros, A. H., Takematsu, M. M., Sanches, N. B., Amado Quagliano, J. C., & Dutra, R. C. L. (2020). FT-IR surface analysis of poly [(4-hydroxybenzoic)-ran-(2-hydroxy-6-naphthoic acid)] fiber: a short review. Polymer Testing, 90, 106750. http://dx.doi.org/10.1016/j.polymertesting.2020.106750.

61 Lin, J. (2002). Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion. European Polymer Journal, 38(1), 79-86. http://dx.doi.org/10.1016/S0014-3057(01)00176-8.

62 Dai, Y., Meng, C., Tang, S., Qin, J., & Liu, X. (2019). Construction of dendritic structure by nano-SiO2 derivate grafted with hyperbranched polyamide in aramid fiber to simultaneously improve its mechanical and compressive properties. European Polymer Journal, 119, 367-375. http://dx.doi.org/10.1016/j.eurpolymj.2019.08.011.

63 Kondo, Y., Miyazaki, K., Takayanagi, K., & Sakurai, K. (2008). Surface treatment of PET fiber by EB-irradiation-induced graft polymerization and its effect on adhesion in natural rubber matrix. European Polymer Journal, 44(5), 1567-1576. http://dx.doi.org/10.1016/j.eurpolymj.2008.02.020.

64 Bansal, S., Ramachandran, M., & Raichurkar, P. (2017). Comparative analysis of bamboo using jute and coir fiber reinforced polymeric composites. Materials Today: Proceedings, 4(2), 3182-3187. http://dx.doi.org/10.1016/j.matpr.2017.02.203.

65 Ramachandran, M., Bansal, S., & Raichurkar, P. (2016). Experimental study of bamboo using banana and linen fibre reinforced polymeric composites. Perspectives in Science, 8, 313-316. http://dx.doi.org/10.1016/j.pisc.2016.04.063.

66 Bajwa, D. S., Adhikari, S., Shojaeiarani, J., Bajwa, S. G., Pandey, P., & Shanmugam, S. R. (2019). Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction & Building Materials, 204, 193-202. http://dx.doi.org/10.1016/j.conbuildmat.2019.01.068.

67 Yu, Z., Assif, J., Magoon, G., Kebabian, P., Brown, W., Rundgren, W., Peck, J., Miake-Lye, R., Liscinsky, D., & True, B. (2017). Differential photoacoustic spectroscopic (DPAS)-based technique for PM optical absorption measurements in the presence of light absorbing gaseous species. Aerosol Science and Technology, 51(12), 1438-1447. http://dx.doi.org/10.1080/02786826.2017.1363866.

68 Badawi, A., Al-Gurashi, W. O., Al-Baradi, A. M., & Abdel-Wahab, F. (2020). Photoacoustic spectroscopy as a non-destructive technique for optical properties measurements of nanostructures. Optik (Stuttgart), 201, 163386. http://dx.doi.org/10.1016/j.ijleo.2019.163389.

69 Takematsu, M. M., Diniz, M. F., Mattos, E. C., & Dutra, R. C. L. (2018). Sheath-core bicomponent fiber characterization by FT-IR and other analytical methodologies. Polimeros: Ciência e Tecnologia, 28(4), 339-347. http://dx.doi.org/10.1590/0104-1428.09016.

70 Senophiyah-Mary, J., & Loganath, R. (2020). A novel method of utilizing waste Printed Circuit Board for the preparation of Fibre Reinforced Polymer. Journal of Cleaner Production, 246, 119063. http://dx.doi.org/10.1016/j.jclepro.2019.119063.

71 Ji, C., Wang, B., Hu, J., Zhang, C., & Sun, Y. (2020). Effect of different preparation methods on mechanical behaviors of carbon fiber-reinforced PEEK-Titanium hybrid laminates. Polymer Testing, 85, 106462. http://dx.doi.org/10.1016/j.polymertesting.2020.106462.

72 Perret, B., Schartel, B., Stöß, K., Ciesielski, M., Diederichs, J., Döring, M., Krämer, J., & Altstädt, V. (2011). Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. European Polymer Journal, 47(5), 1081-1089. http://dx.doi.org/10.1016/j.eurpolymj.2011.02.008.

73 Donadon, B. F., Mascia, N. T., Vilela, R., & Trautwein, L. M. (2020). Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement. Engineering Structures, 202, 109818. http://dx.doi.org/10.1016/j.engstruct.2019.109818.

74 Jayakrishna, K., Rajiyalakshmi, G., & Deepa, A. (2019) Structural health monitoring of fiber polymer composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp.75-91). UK:Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102291-7.00005-8.

75 Essabir, H., Bouhfid, R., & Qaiss, A. (2019) Fracture surface morphologies in understanding of composite structural behavior. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp. 277-293). UK: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102291-7.00014-9.

76 Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., & Karthi, N. (2019). Study of mechanical and morphological properties of jute-tea leaf fiber reinforced hybrid composites: effect of glass fiber hybridization. Materials Today: Proceedings, 27(Part 3), 2372-2375.

77 Idicula, M., Malhotra, S. K., Joseph, K., & Thomas, S. (2005). Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Composites Science and Technology, 65(7–8), 1077-1087. http://dx.doi.org/10.1016/j.compscitech.2004.10.023.

78 Chandekar, H., Chaudhari, V., & Waigaonkar, S. (2020). A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 26(Part 2), 2079-2082. http://dx.doi.org/10.1016/j.matpr.2020.02.449.

79 Liu, X., He, Y., Qiu, D., & Yu, Z. (2019). Numerical optimizing and experimental evaluation of stepwise rapid high-pressure microwave curing carbon fiber/epoxy composite repair patch. Composite Structures, 230, 111529. http://dx.doi.org/10.1016/j.compstruct.2019.111529.

80 Di Mauro, C., Genua, A., Rymarczyk, M., Dobbels, C., Malburet, S., Graillot, A., & Mija, A. (2021). Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Composites Science and Technology, 205, 108678. http://dx.doi.org/10.1016/j.compscitech.2021.108678.

81 Fu, Y., Zhou, H., & Zhou, L. (2021). Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites. Composites Science and Technology, 207, 108711. http://dx.doi.org/10.1016/j.compscitech.2021.108711.

82 Xu, Y., Adekunle, K., Ramamoorthy, S. K., Skrifvars, M., & Hakkarainen, M. (2020). Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Composites Communications, 22, 100536. http://dx.doi.org/10.1016/j.coco.2020.100536.

83 Miao, Y., Chen, H., Cui, G., & Qi, Y. (2021). Preparation of new conductive organic coating for the fiber reinforced polymer composite oil pipe. Surface and Coatings Technology, 412, 127017. http://dx.doi.org/10.1016/j.surfcoat.2021.127017.

84 Balaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J., & Purushothaman, R. (2020). Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin. Results in Chemistry, 2, 100056. http://dx.doi.org/10.1016/j.rechem.2020.100056.

85 Louwsma, J., Carvalho, A., Lutz, J.-F., Joly, S., & Chan-Seng, D. (2021). Adsorption of phenylalanine-rich sequence-defined oligomers onto Kevlar fibers for fiber-reinforced polyolefin composite materials. Polymer, 217, 123465. http://dx.doi.org/10.1016/j.polymer.2021.123465.

86 Sánchez, M. L., Patiño, W., & Cárdenas, J. (2020). Physical-mechanical properties of bamboo fibers-reinforced biocomposites: influence of surface treatment of fibers. Journal of Building Engineering, 28, 101058. http://dx.doi.org/10.1016/j.jobe.2019.101058.

87 Yu, W., Zhang, H., Lan, A., Yang, S., Zhang, J., Wang, H., Zhou, Z., Zhou, Y., Zhao, J., & Jiang, Z. (2020). Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids and Surfaces. B, Biointerfaces, 193, 111098. http://dx.doi.org/10.1016/j.colsurfb.2020.111098. PMid:32498001.

88 Revanth, J. S., Madhav, V. S., Sai, Y. K., Krishna, D. V., Srividya, K., & Sumanth, C. H. M. (2019). TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides, jute and glass fiber. Materials Today: Proceedings, 26(Part 2), 460-465.

89 Mphahlele, K., Ray, S. S., & Kolesnikov, A. (2019). Cure kinetics, morphology development, and rheology of a high-performance carbon-fiber-reinforced epoxy composite. Composites. Part B, Engineering, 176, 107300. http://dx.doi.org/10.1016/j.compositesb.2019.107300.

90 Rahmani, N., Willard, B., Lease, K., Legesse, E. T., Soltani, S. A., & Keshavanarayana, S. (2015). The effect of post cure temperature on fiber/matrix adhesion of T650/Cycom 5320-1 using the micro-droplet technique. Polymer Testing, 46, 14-20. http://dx.doi.org/10.1016/j.polymertesting.2015.05.012.

91 Zin, M. H., Abdan, K., & Norizan, M. N. (2018). The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp. 1–17). UK: Woodhead Publishing.

92 Adole, O., Anguilano, L., Minton, T., Campbell, J., Sean, L., Valisios, S., & Tarverdi, K. (2020). Basalt fibre-reinforced high density polyethylene composite development using the twin screw extrusion process. Polymer Testing, 91, 106467. http://dx.doi.org/10.1016/j.polymertesting.2020.106467.

93 Shelly, D., Nanda, T., & Mehta, R. (2021). Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties. Composites. Part A, Applied Science and Manufacturing, 145, 106371. http://dx.doi.org/10.1016/j.compositesa.2021.106371.

94 Alagar, M., Kumar, A. A., Mahesh, K. P. O., & Dinakaran, K. (2000). Studies on thermal and morphological characteristics of E-glass/Kevlar 49 reinforced siliconized epoxy composites. European Polymer Journal, 36(11), 2449-2454. http://dx.doi.org/10.1016/S0014-3057(00)00038-0.

95 Rozman, H. D., Tan, K. W., Kumar, R. N., Abubakar, A., Ishak, Z. A. M., & Ismail, H. (2000). Effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. European Polymer Journal, 36(7), 1483-1494. http://dx.doi.org/10.1016/S0014-3057(99)00200-1.

96 Ishak, Z. A. M., Ariffin, A., & Senawi, R. (2001). Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylene terephthalate) composites. European Polymer Journal, 37(8), 1635-1647. http://dx.doi.org/10.1016/S0014-3057(01)00033-7.

97 Wang, W., Tang, L., & Qu, B. (2003). Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. European Polymer Journal, 39(11), 2129-2134. http://dx.doi.org/10.1016/S0014-3057(03)00157-5.

98 Olmos, D., & González-Benito, J. (2007). Visualization of the morphology at the interphase of glass fibre reinforced epoxy-thermoplastic polymer composites. European Polymer Journal, 43(4), 1487-1500. http://dx.doi.org/10.1016/j.eurpolymj.2007.01.004.

99 Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., & Dufresne, A. (2008). Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44(8), 2489-2498. http://dx.doi.org/10.1016/j.eurpolymj.2008.05.024.

100 Meng, L., Li, W., Ma, R., Huang, M., Wang, J., Luo, Y., Wang, J., & Xia, K. (2018). Long UHMWPE fibers reinforced rigid polyurethane composites: an investigation in mechanical properties. European Polymer Journal, 105, 55-60. http://dx.doi.org/10.1016/j.eurpolymj.2018.05.021.

101 Anggono, J., Farkas, Á. E., Bartos, A., Móczó, J., Antoni, Purwaningsih, H., & Pukánszky, B. (2019). Deformation and failure of sugarcane bagasse reinforced PP. European Polymer Journal, 112, 153-160. http://dx.doi.org/10.1016/j.eurpolymj.2018.12.033.

102 Fernández, A., Santangelo-Muro, M., Fernández-Blázquez, J. P., Lopes, C. S., & Molina-Aldareguia, J. M. (2021). Processing and properties of long recycled-carbon-fibre reinforced polypropylene. Composites. Part B, Engineering, 211, 108653. http://dx.doi.org/10.1016/j.compositesb.2021.108653.

103 Florek, P., Król, M., Jeleń, P., & Mozgawa, W. (2021). Carbon fiber reinforced polymer composites doped with graphene oxide in light of spectroscopic studies. Materials (Basel), 14(8), 1835. http://dx.doi.org/10.3390/ma14081835. PMid:33917218.

104 Kumar, B., Roy, S., Agumba, D. O., Pham, D. H., & Kim, J. (2022). Effect of bio-based derived epoxy resin on interfacial adhesion of cellulose film and applicability towards natural jute fiber-reinforced composites. International Journal of Biological Macromolecules, 222(Pt A), 1304-1313. http://dx.doi.org/10.1016/j.ijbiomac.2022.09.237 PMid:36198365.

105 Nguyen-Tri, P., Ghassemi, P., Carriere, P., Nanda, S., Assadi, A. A., & Nguyen, D. D. (2020). Recent applications of advanced atomic force microscopy in polymer science: a review. Polymers, 12(5), 1142. http://dx.doi.org/10.3390/polym12051142. PMid:32429499.
 

657b0a21a953955ee57b3f33 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections