Transmissão de risco e volatilidade no setor pecuário do Paraná: uma aplicação do modelo TVP-VAR
Transmission of risk and volatility in the Paraná livestock market: an application of the TVP-VAR model
Tomás Fernandes Torre; Julyerme Matheus Tonin; Carlos Oñate-Paredes
Resumo
Palavras-chave
Abstract
Keywords
References
Adekoya, O. B., Akinseye, A. B., Antonakakis, N., Chatziantoniou, I., Gabauer, D., & Oliyide, J. (2022). Crude oil and Islamic sectoral stocks: Asymmetric TVP-VAR connectedness and investment strategies.
Anand, K., & Mishra, A. K. (2024). Asymmetric TVP-VAR connectedness between highly traded commodities and hedging strategies: Evidence from major contagions.
Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions.
Barros, G. S. A. C., Carrara, A. F., Silva, A. F., & Castro, N. R. (2021). A inflação dos alimentos em 2020 e seus gatilhos.
Cagli, E. C., Mandaci, P. E., & Taskin, D. (2023). The volatility connectedness between agricultural commodity and agri businesses: Evidence from time-varying extended joint approach.
Capitani, D. H. D., & Gaio, L. E. (2023). Volatility transmissionin agricultural markets: Evidence from the Russia-Ukraine conflict.
Capitani, D. H. D., & Gaio, L. E. (2025). Dynamic connectedness and volatility spillover in the Brazilian agricultural market in the context of the Covid-19 pandemic.
Chatziantoniou, I., Gabauer, D., & Gupta, R. (2021).
Coase, R. H. (1960). The problem of Social Cost.
Cunado, J., Gabauer, D., & Gupta, R. (2024). Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach.
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers.
Diebold, F. X., & Yilmaz, K. (2015).
Elliott, G., Rothenberg, T. J., & Stock, J. H. 1992. Efficient tests for an autoregressive unit root.
Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements.
Furuoka, F., Yaya, O. S., Ling, P. K., Al-Faryan, M. A. S., & Islam, M. N. (2023). Transmission of risks between energy and agricultural commodities: Frequency time-varying VAR, asymmetry and portfolio management.
Gabauer, D. (2021). Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system.
Koop, G., & Korobilis, D. (2013). Large time-varying parameter VARs.
Mattos, L. B. D., Lima, J. E. D., & Lirio, V. S. (2009). Integração espacial de mercados na presença de custos de transação: um estudo para o mercado de boi gordo em Minas Gerais e São Paulo.
McNew, K. (1996). Spatial market integration: Definition, theory, and evidence.
McNew, K., & Fackler, P. L. (1997). Testing market equilibrium: Is cointegration informative?
Mishra, A. K., Panda, P., Pradhan, S. K., Panda, A. K., & Smark, C. (2024). Uncertainties and dynamic connectedness among sectors: a case of the USA, India, France, Germany and Russia.
Owusu Junior, P., Agyei, S. K., Adam, A. M., & Bossman, A. (2022). Time-frequency connectedness between food commodities: New implications for portfolio diversification.
Polat, O., Başar, B. D., Torun, E., & Ekşi, İ. H. (2023). Dynamic interlinkages between geopolitical stress and agricultural commodity market: Novel findings in the wake of the Russian Ukrainian conflict.
Polat, O., Ertuğrul, H. M., Sakarya, B., & Akgül, A. (2024). TVP-VAR based time and frequency domain food & energy commodities connectedness an analysis for financial/geopolitical turmoil episodes.
Qin, Y., Chen, J., & Dong, X. (2021). Oil prices, policy uncertainty and travel and leisure stocks in China.
Umar, Z., Jareño, F., & Escribano, A. (2021). Agricultural commodity markets and oil prices: an analysis of the dynamic return and volatility connectedness.
Urso, F. S. P. (2007)
Vo, D. H., & Tran, M. P. B. (2024). Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: Does uncertainty from the Russo-Ukrainian conflict matter?
Wu, Y., Ren, W., Wan, J., & Liu, X. (2023). Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict.
Yang, C., Niu, Z., & Gao, W. (2022). The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: Evidence from the TVP-VAR-SV approach.
Zeng, H., Lu, R., & Ahmed, A. D. (2023). Return connectedness and multiscale spillovers across clean energy indices and grain commodity markets around COVID-19 crisis.
Zhao, J. (2023). Time-varying impact of geopolitical risk on natural resources prices: evidence from the hybrid TVP-VAR model with large system.
Zhu, H., Xia, X., Hau, L., Zeng, T., & Deng, X. (2024). Time-frequency higher-order moment Co-movement and connectedness between Chinese stock and commodity markets.
Submitted date:
01/31/2025
Accepted date:
05/07/2025