Revista de Economia e Sociologia Rural
https://app.periodikos.com.br/journal/resr/article/doi/10.1590/1806-9479.2023.274229pt
Revista de Economia e Sociologia Rural
ARTIGO ORIGINAL

Produto Interno Bruto e pegada hídrica do agronegócio: comparativo entre países

Gross Domestic Product and water footprint of agribusiness: comparative between countries

Umberto Antonio Sesso Filho; Ricardo Luís Lopes; Carlos Alberto Gonçalves Junior; Emerson Guzzi Zuan Esteves; Patrícia Pompermayer Sesso

Downloads: 1
Views: 461

Resumo

O objetivo do presente estudo é dimensionar o agronegócio dos países em termos de renda (Produto Interno Bruto - PIB) e água (pegada hídrica), além de estimar um indicador de sustentabilidade (água por unidade de renda). A metodologia é baseada na matriz insumo-produto e foi aplicada para 189 países com enfoque sobre as vinte maiores economias (PIB) no ano de 2015. O PIB do agronegócio mundial era de US$12,3 trilhões e a pegada hídrica de 151 trilhões de metros cúbicos, os valores representavam respectivamente 18% e 97,5% dos totais do sistema produtivo. A participação da renda do agronegócio no total do sistema produtivo dos países variou entre 4% e 61%. Os maiores valores do PIB do agronegócio foram obtidos para a China (US$ 2,5 trilhões), Estados Unidos (US$ 1,4 trilhão), Índia (US$ 0,67 trilhão), Japão (US$ 0,5 trilhão) e Brasil (US$ 0,43 trilhão). O custo ambiental do agronegócio mensurado em metros cúbicos de água para mil dólares de geração de renda (m3/US$) variou entre menos de cem metros cúbicos para cada mil dólares de renda gerada para mais de 200 mil, o que indica que existe a possibilidade do aumento da eficiência do uso da água e sustentabilidade por meio do desenvolvimento de novas tecnologias.

Palavras-chave

água, pegada hídrica, agronegócio, sustentabilidade, insumo-produto

Abstract

The objective of this study is to measure the countries’ agribusiness in terms of income (Gross Domestic Product - GDP) and water (water footprint), in addition to estimating a sustainability indicator (water per unit of income). The methodology is based on the input-output matrix and was applied to 189 countries with a focus on the twenty largest economies (GDP) in 2015. The GDP of world agribusiness was US$12.3 trillion and the water footprint of 151 trillion cubic meters, the values represented respectively 18% and 97.5% of the total production system. The share of agribusiness income in the total productive system of the countries ranged from 4% to 61%. The highest agribusiness GDP figures were obtained for China (US$ 2.5 trillion), the United States (US$ 1.4 trillion), India (US$ 0.67 trillion), Japan (US$ 0.5 trillion) and Brazil (US$ 0.43 trillion). The environmental cost of agribusiness measured in cubic meters of water per thousand dollars of income generation (m3/US$) ranged from less than one hundred cubic meters for every thousand dollars of income generated to more than 200 thousand, which indicates that there is the possibility of increasing the efficiency of water use and sustainability through the development of new technologies.

Keywords

water, water footprint, agribusiness, sustainability, input-output

Referências

Aldaya, M. M., & Hoekstra, A. Y. (2010). The water needed for Italians to eat pasta and pizza. Agricultural Systems, 103(6), 351-360. http://doi.org/10.1016/j.agsy.2010.03.004

Amarante, R. L., & Sesso Filho, U. A. (2020). Estimativa do Produto Interno Bruto do agronegócio e sua relação com renda per capita em 190 países. Revista Unicesumar, 22(1), 79-91. http://doi.org/10.17765/1518-1243.2020v22n1p79-91

Bajan, B., & Mrówczyńska-Kamińska, A. (2020). Carbon footprint and environmental performance of agribusiness production in selected countries around the world. Journal of Cleaner Production, 276, 1-10. http://doi.org/10.1016/j.jclepro.2020.123389

Burek, P., Satoh, Y., Fischer, G., Kahil, M. T., Scherzer, A., Tramberend, S., Nava, L. F., Wada, Y., Eisner, S., Flörke, M., Hanasaki, N., Magnuszewski, P., Cosgrove, B., & Wiberg, D. (2016). Water futures and solution-fast track initiative (final report). Laxenburg, Austria: IIASA. Recuperado em 16 de dezembro de 2023, de https://core.ac.uk/download/pdf/33972065.pdf

Cassman, K. G., & Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability, 3(4), 262-268. http://doi.org/10.1038/s41893-020-0507-8

Chapagain, A. K., Hoekstra, A. Y., & Savenije, H. H. G. (2006). Water saving through international trade of agricultural products. Hydrology and Earth System Sciences, 10(3), 455-468. http://doi.org/10.5194/hess-10-455-2006

Davis, J. H., & Goldberg, R. A. (1957). A concept of agribusiness. Journal of Farm Economics, 39(4), 1042-1045.

Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., & Wichelns, D. (2015). Managing water and fertilizer for sustainable agricultural intensification. Paris: International Fertilizer Industry Association, International Water Management Institute, International Plant Nutrition Institute, International Potash Institute. Recuperado em 10 de janeiro de 2023, de https://ageconsearch.umn.edu/record/208412/files/managing_water_and_fertilizer_for_sustainable_agricultural_intensification.pdf

EORA. (2023). EORA global supply chain database. Recuperado em 10 de janeiro de 2023, de https://worldmrio.com/

Falkenmark, M., & Rockström, J. (2004). Balancing water for humans and nature: the new approach in ecohydrology. London: Earthscan.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342. http://doi.org/10.1038/nature10452

Furtuoso, M. C. O., & Guilhoto, J. J. M. (2003). Estimativa e mensuração do produto interno bruto do agronegócio da economia brasileira 1994 a 2000. Revista de Economia e Sociologia Rural, 43(4), 803-827. http://doi.org/10.1590/S0103-20032003000400005

Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J., & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341(6141), 33-34. http://doi.org/10.1126/science.1234485

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. http://doi.org/10.1126/science.1185383

Hoekstra, A. Y. (2008). Water neutral: reducing and offsetting the impacts of water footprints (Value of Water Research Report Series, No. 28). Delft, Netherlands: UNESCO-IHE. Recuperado em 10 de janeiro de 2023, de www.waterfootprint.org/Reports/Report28-WaterNeutral.pdf

Hoekstra, A. Y., & Chapagain, A. K. (2008). Globalization of water: sharing the planet’s freshwater resources. Oxford: Blackwell Publishing.

Hoekstra, A. Y., & Hung, P. Q. (2002). Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade (Value of Water Research Report Series, No. 11, 120 p.). Delft, Netherlands: UNESCO-IHE.

Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 2012(109), 3232-3237. http://doi.org/10.1073/pnas.1109936109

Hoekstra, A. Y., Chapagain, A. K., Aladaya, M. M., & Mekonnen, M. M. (2009). The water footprint manual: state of the art (1st ed., , 127 p.). Enschede: Water Footprint Network.

Jalava, M., Guillaume, J. H., Kummu, M., Porkka, M., Siebert, S., & Varis, O. (2016). Diet change and food loss reduction: What is their combined impact on global water use and scarcity? Earth’s Future, 4(3), 62-78. http://doi.org/10.1002/2015EF000327

Kummu, M., De Moel, H., Porkka, M., Siebert, S., Varis, O., & Ward, P. J. (2012). Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. The Science of the Total Environment, 438, 477-489. http://doi.org/10.1016/j.scitotenv.2012.08.092

Lenzen, M., Kanemoto, K., Moran, D., & Geschke, A. (2012). Mapping the structure of the world economy. Environmental Science & Technology, 46(15), 8374-8381.

Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). Building Eora: a global multi-region input–output database at high country and sector resolution. Economic Systems Research, 25(1), 20-49.

Leontief, W. (1951). The structure of the American economy (2nd ed.). New York: Oxford University Press.

Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water footprint of crop productions: a review. The Science of the Total Environment, 548-549, 236-251. http://doi.org/10.1016/j.scitotenv.2016.01.022

Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600. http://doi.org/10.5194/hess-15-1577-2011

Mekonnen, M. M., & Gerbens-Leenes, W. (2020). The water footprint of global food production. Water, 12(10), 2696. http://doi.org/10.3390/w12102696

Mekonnen, M. M., & Hoekstra, A. Y. (2010). Mitigating the water footprint of export cut flowers from the Lake Naivasha Basin, Kenya (Value of Water Research Report Series, No. 45). Delft, Netherlands: UNESCO-IHE. Recuperado em 12 de novembro de 2023, de www.waterfootprint.org/Reports/Report45-WaterFootprint-Flowers-Kenya.pdf

Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401-415. http://doi.org/10.1007/s10021-011-9517-8

Mekonnen, M. M., & Hoekstra, A. Y. (2020). Blue water footprint linked to national consumption and international trade is unsustainable. Nature Food, 1(12), 792-800. http://doi.org/10.1038/s43016-020-00198-1

Mierzwa, J. C., & Hespanhol, I. (2005). Água na indústria: uso racional e reúso. São Paulo: Oficina de Textos.

Miller, R. E., & Blair, P. D. (2009). Input-output analysis: foundations and extensions (750 p.). Cambridge: Cambridge University Press.. http://doi.org/10.1017/CBO9780511626982.

Pompermayer Sesso, P. P., Mendes, F. H., Sesso Filho, U. A., & Zapparoli, I. D. (2023). Agronegócio de países selecionados: análise de sustentabilidade entre o PIB e emissões de CO2. Revista de Economia e Sociologia Rural, 61(2), e258543. http://doi.org/10.1590/1806-9479.2022.258543

Rocha, C. M., Bassanelli, F., Fernandes, L., & Espíndola, L. (2018). Crise hídrica: estratégias utilizadas em indústrias no Vale do Paraíba como forma de economia na utilização da água. Revista Científica on-line - Tecnologia, Gestão e Humanismo, 8(1), 2-11.

Sesso Filho, U. A., Borges, L. T., Pompermayer Sesso, P., Brene, P. R. A., & Esteves, E. G. Z. (2022). Mensuração do complexo agroindustrial no mundo: comparativo entre países. Revista de Economia e Sociologia Rural, 60(1), e235345. http://doi.org/10.1590/1806-9479.2021.235345

Sesso Filho, U. A., Trindade Borges, L., Pompermayer Sesso, P., Alves Brene, P. R., & Domenes Zapparoli, I. (2019). Geração de renda, emprego e emissões atmosféricas no agronegócio: um estudo para quarenta países. Revista de Economia e Agronegócio, 17(1), 30-55. http://doi.org/10.25070/rea.v17i1.7902

Tamea, S., Tuninetti, M., Soligno, I., & Laio, F. (2021). Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database. Earth System Science Data, 13(5), 2025-2051. http://doi.org/10.5194/essd-13-2025-2021

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260-20264. http://doi.org/10.1073/pnas.1116437108

Yan, B., Fan, J., & Zhou, Y. (2011). Study on the relationship between economic growth and structural change of agribusiness: evidences from national and provincial levels. Laxenburg, Austria: IIASA. Recuperado em 9 de janeiro de 2023, de https://www.iioa.org/conferences/19th/papers/files/442_20110407041_StudyontheRelationshipbetweenEconomicGrowthandStructuralChangeofAgribusiness.doc

Yang, H., Wang, L., Abbaspour, K. C., & Zehnder, A. J. B. (2006). Virtual water trade: an assessment of water use efficiency in the international food trade. Hydrology and Earth System Sciences, 10(3), 443-454. http://doi.org/10.5194/hess-10-443-2006
 


Submetido em:
25/04/2023

Aceito em:
25/02/2024

6643bf1ea953954d21604464 resr Articles
Links & Downloads

resr

Share this page
Page Sections