Anestésicos, precondicionamento e proteção cerebral
Anesthetics, cerebral protection and preconditioning
Rogean Rodrigues Nunes; Gastão Fernandes Duval Neto; Júlio César Garcia de Alencar; Suyane Benevides Franco; Nayanna Quezado de Andrade; Danielle Maia Holanda Dumaresq; Sara Lúcia Cavalcante
Resumo
Palavras-chave
Abstract
Keywords
Referências
Koerner IP, Alkayed NJ. Ischemic preconditioning. Acute stroke, bench to bedside. 2006:345-353.
Tatlisumak T, Durukan A. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2.
Dahl NA, Balfour WM. Prolonged anoxic survival due to anoxia pre-exposure: Brain ATP, lactate, and pyruvate. Am J Physiol. 1964;207:452-456.
Wells BA, Keats AS, Cooley DA. Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion. Surgery. 1963;54:216-223.
Kitagawa K, Matsumoto M, Tagaya M. "Ischemic tolerance" phenomenon found in the brain. Brain Res. 1990;528:21-24.
Homi HM, Silva Junior BA, Velasco IT. Fisiopatologia da isquemia cerebral. Rev Bras Anestesiol. 2000;50:405-414.
Sanders RD, Ma D, Maze M. Anaesthesia induced neuroprotection. Best Pract Research Clin. Anaesthesiology. 2005;19:461-474.
Safar P. Cerebral resuscitation after cardiac arrest: research initiatives and future directions. Ann Emerg Med. 1993;22:324-349.
Lent R. Os chips neurais: processamento de informações e transmissão de mensagens através das sinapses. Cem bilhões de neurônios?. 2010:111-145.
Farooqui AA, Haun SE, Horrocks LA. Ischemia and hypoxia. Basic neurochemistry: molecular, cellular, and medical aspects. 1994:867-883.
Plum F. Mediators and antagpnism in seconday brain damage: In vivo and in vitro control of acid-base regulation of brain cells during ischemic and selective acidic exposure. Acta Neurochir. 1993;57:57-63.
Dietrich WD. Morphological manifestation of reperfusion injury in brain. Ann N Y Acad Sci. 1994;723:15-24.
Lai JC. Oxidative metabolism in neuronal and non-neuronal mitochondria. Can J Physiol Pharmacol. 1992;70:130-137.
Abe K, Aoki M, Kawagoe J. Ischemic delayed neuronal death: A mitochondrial hypothesis. Stroke. 1995;26:1478-1489.
Traystman RJ, Kirsch JR, Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol. 1991;71:1185-1195.
Yue TL, Barone F, Gu JL. Brain alfa-tocoferol levels are not altered following ischemia/reperfusion induced cerebral injury in rats and gerbils. Brain Res. 1993;610:53-56.
Ikeda Y, Long DM. The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery. 1990;27:1-11.
Oh MS, Betz AL. Interaction between free radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke. 1991;22:915-921.
Wahl M, Schilling L, Unterberg A. Mediators of vascular and parenchymal mechanisms in secondary brain damage. Acta Neurochir. 1993;57:64-72.
Peruche B, Krieglstein J. Mechanisms of drug actions against neuronal damage caused by ischemia: an overview. Prog Neuropsychopharmacol Biol Psychiatry. 1993;17:21-70.
Gustafson I, Edgren E, Hulting J. Brain-oriented intensive care after resuscitation from cardiac arrest. Resuscitation. 1992;24:245-261.
Werner C, Hoffman WE, Thomas C. Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines. Anesthesiology. 1990;73:923-929.
Ma D, Hossain M, Rajakumaraswamy N. Combination of xenon and isoflurane produces a synergistic protective effect against oxygen glucose deprivation injury in a neuronal-glial co-culture model. Anesthesiology. 2003;99:748-751.
Crow JP, Beckman JS. The role of peroxynitrite in nitric-oxide mediated toxicity. Curr Top Microbiol Immunol. 1995;196:57-73.
Nakashima MN, Yamashita K, Kataoka Y. Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following focal cerebral ischemia. Cell Mol Neurobiol. 1995;15:341-349.
Tatlisumak T, Durukan A. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2.
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends in Neuroscience. 1999;22:391-397.
Liu Y, Kato H, Nakata N. Protection of rat hippocampus againstis chemic neuronal damage by pretreatment with sublethal ischemia. Brain Res. 1992;586:121-124.
Nishio S, Taki W, Uemura Y. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res. 1993;615:281-288.
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74.
Chopp M, Chen H, Ho KL. Transient hyperthermia protects against subsequent fore brain ischemic cell damage in the rat. Neurology. 1989;39:1396-1398.
Nishio S, Yunoki M, Chen ZF. Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg. 2000;93:845-851.
Bergstedt K, Hu BR, Wieloch T. Initiation of protein synthesis and heat shock protein 72 expression in the rat brain following severe insulin induced hypoglycemia. Acta Neuropathol. 1993;86:145-153.
Huber R, Kasischke K, Ludolph AC. Increase of cellular hypoxic tolerance by erythromycin and other antibiotics. Neuroreport. 1999;10:1543-1546.
Riepe MW, Kasischke K, Raupach A. Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Stroke. 1997;28:2006-2011.
Dawson TM. Preconditioning mediated neuroprotection through erythropoietin?. Lancet. 2002;359:96-97.
Kapinya KJ, Lowl D, Futterer C. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and isinducible NO synthase dependent. Stroke. 2002;33:1889-1898.
Barone FC, White RF, Spera PA. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998;29:1937-1950.
Weigl M, Tenze G, Steinlechner B. A systematic review of currently available pharmacological neuroprotective agents as a sole intervention before anticipated or induced cardiac arrest. Resuscitation. 2005;65:21-39.
Zheng Z, Lee JE, Yenari MA. Stroke: molecular mechanisms and potential targets for treatment. Curr Mol Med. 2003;3:361-372.
Han HS, Yenari MA. Cellular targets of brain inflammation in stroke. Curr Opin Investig Drugs. 2003;4:522-529.
Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuro pathol Exp Neurol. 2003;62:127-136.
Ginis I, Jaiswal R, Klimanis D. TNF-alpha-induced tolerance to ischemic injury involves differential control of NFkappa B transactivation: the role of NF-kappa B association with p300 adaptor. J Cereb Blood Flow Metab. 2002;22:142-152.
Gary DS, Bruce-Keller AJ, Kindy MS. Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab. 1998;18:1283-1287.
Bruce AJ, Boling W, Kindy MS. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med. 1996;2:788-794.
Candelario-Jalil E, Alvarez D, Gonzalez-Falcon A. Neuroprotective efficacy of nime sulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Phahrmacol. 2002;453:189-195.
Uchino H, Minamikawa-Tachino R, Kristian T. Differential neuroprotection by cyclosporine A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002;10:219-233.
Kinoshita K, Kraydieh S, Alonso O. Effect of post traumatic hyperglycemia on contusion volume and neutrophilac cumulation after moderate fluid-percussion brain injury in rats. J Neurotrauma. 2002;19:681-692.
Chew W, Kucharczyk J, Moseley M. Hyperglycemia augments ischemic brain injury: in vivo MR imaging/spectroscopic study with nicardipine in cats with occluded middle cerebral arteries. Am J Neuroradiol. 1991;12:603-609.
Conroy BP, Grafe MR, Jenkins LW. Histopathologic consequences of hyperglycemic cerebral ischemia during hypothermic cardiopulmonary by pass in pigs. Ann Thorac Surg. 2001;71:1325-1334.
Guyot LL, Diaz FG, O'Regan MH. The effect of streptozotocin induced diabetes on the release of excitotoxic and other aminoacids from the ischemic rat cerebral cortex. Neurosurgery. 2001;48:385-390.
Lin B, Ginsberg MD, Busto R. Hyperglycemia triggers massive neutrophil deposition in brain following transient ischemia in rats. Neurosci Lett. 2000;278:1-4.
Ding C, He Q, Li PA. Activation of cell death pathway after a brief period of global ischemia in diabetic and non diabetic animals. Exp Neurol. 2004;188:421-429.
Baird TA, Parsons MW, Phanh T. Persistent post stroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003;34:2208-2214.
Nuttall GA, Abel MD, Mullany CJ. Intraoperative hyperglycemia and perioperative outcomes in cardiac surgery patients. Mayo Clin Proc. 2005;80:862-866.
VandenBerghe G, Schoonheydt K, Becx P. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64:1348-1353.
Auer RN. Non pharmacologic (physiologic) neuroprotection in the treatment of brain ischemia. Ann NYAcad Sci. 2001;939:271-282.
Busto R, Dietrich WD, Globus MY. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987;7:729-738.
Zhao O, Memezawa H, Smith ML. Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res. 1994;649:253-259.
Minamisawa H, Smith ML, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10 and 15min of fore brain ischemia. Ann Neurol. 1990;28:26-33.
Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549-556.
Koehler RC, Eleff SM, Traystman RJ. Global neuronal ischemia and reperfusion. Cardiac arrest: the science and practice of resuscitation medicine. 1996:113-145.
Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456-1462.
Dirnag LU, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391-397.
Dawson TM, Dawson VL, Snyder SH. A novel neuronal messenger in brain: the free radical, nitricoxide. Ann Neurol. 1992;32:297-311.
Dawson TM, Dawson VL. Nitricoxide: actions and pathological roles. Neuroscientist. 1995;1:7-18.
Yuan HB, Huang Y, Zheng S. Hypothermic preconditioning increases survival of purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology. 2004;100:331-337.
Calle PA, Paridaens K, DeRidder LI. Failure of nimodipine to prevent brain damage in a global brain ischemia model in the rat. Resuscitation. 1993;25:59-71.
Lazarewicz JW, Pluta R, Puka M. Diverse mechanisms of neuronal protection by nimodipine in experimental rabbit brain ischemia. Stroke. 1990;21:108-110.
Roine RO, Kaste M, Kinnunen A. Nimodipine after resuscitation from out- of-hospital ventricular fibrillation: A placebo-controlled, double-blind, randomized trial. JAMA. 1990;264:3171-3177.
Arnowski J, Waxham MN, Grotta JC. Neuronal protection and preservation of calcium/calmodulin dependent protein kinase II and proteinkinase C activity by dextrorphan treatment in global ischemia. J Cereb Blood Flow Metab. 1993;13:550-557.
Li MM, Payne RS, Reid KH. Correlates of delayed neuronal damage and neuro protection in a rat model of cardiac arrest induced cerebral ischemia. Brain Res. 1999;826:44-52.
Dietrich WD, Lin B, Globus MY. Effect of delayed M K-801 (dizocilpine) treatment with or without immediate post ischemic hypothermia on chronic neuronal survival after global fore brain ischemia in rats. J Cereb Blood Flow Metab. 1995;15:960-968.
Shuaib A, Murabit MA, Kanthan R. The neuroprotective effects of gamma-vinyl GABA in transient global ischemia: a morphological study with early and delayed evaluations. Neurosci Lett. 1996;204:1-4.
Thaminy S, Reymann JM, Heresbach N. Is chlormethiazole neuroprotective in experimental global cerebral ischemia?: A microdialysis and behavioral study. Pharmacol Bio chem Behav. 1997;56:737-745.
Vergoni AV, Ottani A, Botticelli AR. Neuroprotective effect of gamma hydroxybutyrate in transient global cerebral ischemia in the rat. Eur J Pharmacol. 2000;397:75-84.
Iqbal S, Baziany A, Gordon S. Neuroprotective effect of tiagabine in transient fore brain global ischemia: an in vivo microdialysis, behavioral, and histological study. Brain Res. 2002;946:162-170.
Artru AA, Michenfelder JD. A noxic cerebral potassium accumulation reduced by phenytoin: mechanism of cerebral protection?. Anesth Analg. 1981;60:41-45.
Imaizumi S, Kurosawa K, Kinouchi H. Effect of phenytoin on cortical Na(þ)-K(þ)-ATPase activity in global ischemic rat brain. J Neurotrauma. 1995;12:231-234.
Brambrink AM, Koerner IP, Diehl K. The antibiotic erythromycin induces tolerance against transient global cerebral ischemia in rats (pharmacologic preconditioning). Anesthesiology. 2006;104:1208-1211.
Kawaguchi M, Kimbro JR, Drummond JC. Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology. 2000;92:1335-1342.
Kawaguchi M, Drummond JC, Cole DJ. Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. Anesth Analg. 2004;98:798-805.
Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994;367:607-614.
Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 2006;24:1-21.
Kudo M, Aono M, Lee Y. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal glial cultures. Anesthesiology. 2001;95:756-765.
Kimbro JR, Kelly PJ, Drummond JC. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92:806-812.
Harada H, Kelly PJ, Cole DJ. Isoflurane reduces N-methylD-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg. 1999;89:1442-1447.
Blanck TJ, Haile M, Xu F. Isoflurane pretreatment ameliorates post ischemic neurologic dysfunction and preserves hippocampal Ca2C/calmodulin dependent proteinkinase in a canine cardiac arrest model. Anesthesiology. 2000;93:1285-1293.
Miura Y, Grocott HP, Bart RD. Differential effects of anesthetic agents on outcome from near complete but not incomplete global ischemia in the rat. Anesthesiology. 1998;89:391-400.
Engelhard K, Werner C, Reeker W. Desflurane an disoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Brit J Anaesth. 1999;83:415-421.
Patel PM, Drummond JC, Cole DJ. Isoflurane and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats. Anesth Analg. 1998;86:773-780.
Soonthon-Brant V, Patel PM, Drummond JC. Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg. 1999;88:49-55.
Baughman VL, Hoffman WE, Miletich DJ. Neurologic outcome in rat following in complete cerebral ischemia during halothane, isoflurane, or N2O. Anesthesiology. 1988;69:192-198.
Homi HM, Mixco JM, Sheng H. Severe hypotension is not essential for isoflurane neuroprotection against fore brain ischemia in mice. Anesthesiology. 2003;99:1145-1151.
Mackensen GB, Nellgard B, Kudo M. Periischemic cerebral blood flow (CBF) does not explain beneficial effects of isoflurane on outcome from near complete fore brain ischemia in rats. Anesthesiology. 2000;93:1102-1106.
Engelhard K, Werner C, Reeker W. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Brit J Anaesth. 1999;83:415-421.
Bickler PE, Warner DS, Stratmann G. Gamma-Aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg. 2003;97:564-571.
Miyazaki H, Nakamura Y, Arai T. Increase of glutamate uptake in astrocytes: a possible mechanism of action of volatile anesthetics. Anesthesiology. 1997;86:1359-1366.
Yatsu FM, Diamond I, Graziano C. Experimental brain ischemia: protection from irreversible damage with a rapid acting barbiturate (methohexital). Stroke. 1972;3:726-732.
Schmid-Elsaesser R, Schroder M, Zausinger S. EEG burst suppression is not necessary for maximum barbiturate protection in transient focal cerebral ischemia in the rat. Journal of Neurological Science. 1999;162:14-19.
Warner DS, Takaoka S, Wu B. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84:1475-1484.
Baughman VL, Hoffman WE, Thomas C. Comparison of methohexital and isoflurane on neurologic outcome and histopathology following incomplete ischemia in rats. Anesthesiology. 1990;72:85-94.
Milde LN, Milde JH, Lanier WL. Comparison of thee ffects of isoflurane and thiopental on neurologic outcome and neuropathology after temporary focal cerebral ischemia in primates. Anesthesiology. 1988;69:905-913.
Nehls DG, Todd MM, Spetzler RF. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology. 1987;66:453-464.
Zausinger S, Westermaier T, Plesnila N. Neuroprotection in transient focal cerebral ischemia by combination drug therapy and mild hypothermia: comparison with customary therapeutic regimen. Stroke. 2003;34:1526-1532.
Whitelaw A, Thoresen M. Clinical trials of treatments after perinatal asphyxia. Curr Opin Ped. 2002;14:664-668.
Westermaier T, Zausinger S, Baethmann A. No additional neuroprotection provided by barbiturate-induced burst suppression under mild hypothermic conditions in rats subjected to reversible focal ischemia. Journal of Neurosurgery. 2000;93:835-844.
Ward JD, Becker DP, Miller JD. Failure of prophylac ic barbiturate coma in the treatment of severe head injury. Journal of Neurosurgery. 1985;62:383-388.
Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. New England Journal of Medicine. 1986;314:397-403.
Zaidan JR, Klochany A, Martin WM. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology. 1991;74:406-411.
Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64:165-170.
Kochs E, Hoffman WE, Werner C. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage followingin complete ischemia in rats. Anesthesiology. 1992;76:245-252.
Yamaguchi S, Midorikawa Y, Okuda Y. Propofol prevents delayed neuronal death following transient fore brain ischemia in gerbils. Canadian Journal of Anaesthesia. 1999;46:593-598.
Engelhard K, Werner C, Eberspacher E. Influence of propofol on neuronal damage and apoptotic factor safter incomplete cerebral ischemia and reperfusion in rats: a longterm observation. Anesthesiology. 2004;101:912-917.
Roach GW, Newman MF, Murkin JM. Multicenter study of perioperative ischemia. Anesthesiology. 1999;90:1255-1264.
Werner C, Hoffman WE, Thomas C. Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines. Anesthesiology. 1990;73(^s923-929).
Hoffman WE, Cheng MA, Thomas C. Clonidine decreases plasma catecholamines and improves outcome from incomplete ischemia in the rat. Anesth Analg. 1991;73:460-464.
Hoffman WE, Kochs E, Werner C. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat; Reversal by the a2-adrenergic antagonist atipamezole. Anesthesiology. 1991;75:328-332.
Maier C, Steinberg GK, Sun GH. Neuroprotection by the a2-adrenoceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology. 1993;79:306-312.
Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244:1360-1362.
Loscher W, Wlaz P, Szabo L. Focal ischemia enhances the adverse effect potential of N-methyl-D- aspartate receptor antagonists in rats. Neuroscience Letters. 1998;240:33-36.
Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. Journal of Neuroscience. 1988;8:185-196.
Proescholdt M, Heimann A, Kempski O. Neuroprotection of S(+) ketamine isomer in global fore brain ischemia. Brain Research. 2001;904:245-251.
Lees GJ. Influence of ketamine on the neuronal death caused by NMDA intherat hippocampus. Neuropharmacology. 1995;34:411-417.
Nagels W, Demeyere R, Van Hemelrijck J. Evaluation of the neuroprotective effects of S (+) ketamine during open-heart surgery. Anesth Analg. 2004;98:1595-1603.
Arrowsmith JE, Harrison MJ, Newman SP. Neuroprotection of the brain during cardiopulmonary bypass: a randomized trial of remacemide during coronary artery bypass in171 patients. Stroke. 1998;29:2357-2362.
Todorovic VJ, Todorovic SM, Mennerick S. Nitrousoxide (laughinggas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Medicine. 1998;4:460-463.
Yokoo N, Sheng H, Mixco J. Intraischemic nitrous oxide alters neither neurologic nor histologic outcome: a comparison with dizocilpine. Anesth Analg. 2004;99:896-903.
Wilhelm S, Ma D, Maze M. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96:1485-1491.
Homi HM, Yokoo N, Ma D. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003;99:876-881.
Ma D, Yang H, Lynch J. Xenon attenuates cardiopulmonary bypass induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology. 2003;98:690-698.
David HN, Leveille F, Chazalviel L. Reduction of ischemic brain damage by nitrous oxide and xenon. Journal of Cerebral Blood Flow and Metabolism. 2003;23:1168-1173.
Ma D, Wilhelm S, Maze M. Neuroprotective and neurotoxic properties of the "inert" gas, xenon. Brith J Anaesth. 2002;89:739-746.
Nagata A, Nakao SS, Nishizawa N. Xenon inhibits but N(2)O enhances ketamine-induced c-Fos expression in the rat posterior cingulated and retrosplenial cortices. Anesth Analg. 2001;92:362-368.
Gruss M, Bushell TJ, Bright DP. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Molecular Pharmacology. 2004;65:443-452.