Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942012000600007
Brazilian Journal of Anesthesiology
Review Article

Hipertermia maligna: aspectos moleculares e clínicos

Malignant hyperthermia: clinical and molecular aspects

Ana Carolina de Carvalho Correia; Polyana Cristina Barros Silva; Bagnólia Araújo da Silva

Downloads: 5
Views: 1913

Resumo

CONTEÚDO: A hipertermia maligna (HM) é uma doença farmacogenética potencialmente letal que acomete indivíduos geneticamente predispostos. Manifesta-se em indivíduos susceptíveis em resposta à exposição a anestésicos inalatórios, relaxantes musculares despolarizantes ou atividade física extrema em ambientes quentes. Durante a exposição a esses agentes desencadeadores, há um aumento rápido e sustentado da concentração de cálcio mioplasmático (Ca2+) induzido pela hiperativação dos receptores de rianodina (RYR1) do músculo esquelético, causando uma alteração profunda na homeostase de Ca2+, caracterizando um estado hipermetabólico. RYR1, canais de libertação de Ca2+ do retículo sarcoplasmático, é o principal local de susceptibilidade à HM. Várias mutações no gene que codifica a proteína RYR1 foram identificadas, mas outros genes podem estar envolvidos. Atualmente, o método padrão para o diagnóstico de sensibilidade à HM é o teste de contratura muscular para exposição ao halotano-cafeína (CHCT) e o único tratamento é o uso de dantroleno. No entanto, com os avanços no campo da genética molecular, um pleno entendimento da etiologia da doença pode ser fornecido, favorecendo o desenvolvimento de um diagnóstico preciso, menos invasivo, com o teste de ADN, e também proporcionar o desenvolvimento de novas estratégias terapêuticas para o tratamento da HM. Logo, esta breve revisão tem como objetivo integrar os aspectos clínicos e moleculares da HM, reunindo informações para uma melhor compreensão desta canalopatia.

Palavras-chave

ANESTÉSICOS, Volátil, BLOQUEADOR MUSCULAR, Cálcio, Hipertermia Maligna, Rianodina

Abstract

CONTENT: Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disorder that affects genetically predisposed individuals. It manifests in susceptible individuals in response to exposure to Inhalant anesthetics, depolarizing muscle relaxants or extreme physical activity in hot environments. During exposure to these triggering agents, there is a rapid and sustained increase of myoplasmic calcium (Ca2+) concentration induced by hyperactivation of ryanodine receptor of skeletal muscle (RyR1), causing a profound change in Ca2+ homeostasis, featuring a hypermetabolic state. RyR1, Ca2+ release channels of sarcoplasmic reticulum, is the primary locus for MH susceptibility. Several mutations in the gene encoding the protein RyR1 have been identified; however, other genes may be involved. Actually, the standard method for diagnosing MH susceptibility is the muscle contracture test for exposure to halothane-caffeine (CHCT) and the only treatment is the use of dantrolene. However, with advances in molecular genetics, a full understanding of the disease etiology may be provided, favoring the development of an accurate diagnosis, less invasive, with DNA test, and also will provide the development of new therapeutic strategies for treatment of MH. Thus, this brief review aims to integrate molecular and clinical aspects of MH, gathering input for a better understanding of this channelopathy.

Keywords

Anesthetics, Inhalation, Calcium, Malignant Hyperthermia, Neuromuscular Blocking Agents, Ryanodine

Referencias

Jurkat-Rott K, Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest. 2005;115:2000-2009.

Carpenter D, Robinson RL, Quinnell RJ. Genetic variation in RYR1 and malignant hyperthermia phenotypes. Br J Anaesth. 2009:1-11.

Lueck JD, Goonasekera SA, Dirksen RT. Ryanodinopathies: Muscle Disorders Linked to Mutations in Ryanodine Receptors. Basic Appl Myol. 2004;14(5):345-358.

Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002;82:893-922.

Gómez JRO. Anestesia en la hipertermia maligna. Rev Esp Aneste.siol Reanim. 2008;55:165-174.

Mackrill JJ. Ryanodine receptor calcium channels and their partners as drug targets. Biochem Pharmacol. 2010;79:1535-1543.

Balshaw DM, Yamaguchi N, Meissner G. Modulation intracellular Calcium-release channels by calmodulin. J Memb Biol. 2002;185:1-8.

Kovacs E, Xub L, Pasek DA. Regulation of ryanodine receptors by sphingosylphosphorylcholine: Involvement of both calmodulin-dependent and -independent mechanisms. Biochem Biophys Res Commun. 2010;401:281-286.

Serysheva II, Ludtke SJ, Baker ML. Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc Natl Acad Sci. 2008;105:9610-9615.

Meissner G. Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium. 2004;35:621-628.

Takeshima H, Nishimura S, Matsumoto T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989;339:439-445.

Zorzato F, Fujii J, Otsu K. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1990;265(4):2244-2256.

Du GG, Avila G, Sharma P. Role of the sequence surrounding predicted transmembrane helix M4 in membrane association and function of the Ca (2+) release channel of skeletal muscle sarcoplasmic reticulum (ryanodine receptor isoform 1). J Biol Chem. 2004;279(36):37566-37574.

Hamilton SL. Ryanodine receptors. Cell Calcium. 2005;38:253-260.

Marks AR. Ryanodine Receptors, FKBP12, and Heart Failure. Front Biosci. 2002;7:970-977.

Samsò M, Wagenknecht T, Allen PD. Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nature Struct Biol. 2005;12(6):539-544.

Fessenden JD, Perez CF, Goth S. Identification of a Key Determinant of Ryanodine Receptor Type 1 Required for Activation by 4-Chloro-m-cresol. J Biol Chem. 2003;278(31):28727-28735.

Paul-Pletzer K, Yamamoto T, Bhat MB. Identification of a dantroleno-binding sequence on the skeletal muscle ryanodine receptor. J Biol Chem. 2002;277:34918-34923.

Brum G, Piriz N, DeArmas R. Differential Effects of Voltage-Dependent Inactivation and Local Anesthetics on Kinetic Phases of Ca21 Release in Frog Skeletal Muscle. Biophys J. 2003;85:245-254.

Copello JA, Barg S, Sonnleitner A. Differential activation by Ca2+, ATP and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+. J Membr Biol. 2002;187:51-64.

Steele DS, Duke AM. Defective Mg2+ regulation of RyR1 as a causal factor in malignant hyperthermia. Arch Biochem Biophy. 2007;458:57-64.

Voss AA, Lango J, Ernst-Russell M. Identification of hyperreactive cysteines within ryanodine receptor type 1 by mass spectrometry. J Biol Chem. 2004;279:34514-34520.

Lukyanenko V, Gyorke I, Wiesner TF. Potentiation of Ca(2+) release by cADP-ribose in the heart is mediated by enhanced SR Ca(2+) uptake into the sarcoplasmic reticulum. Circ Res. 2001;89:614-622.

Reiken S, Lacampagne A, Zhou H. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol. 2003;160:919-928.

Hamilton SL, Serysheva I, Strasburg GM. Calmodulin and Excitation-Contraction Coupling. News Physiol Sci. 2000;15:281-284.

Beard NA, Sakowska MM, Dulhunty AF. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J. 2002;82:310-320.

Bellinger AM, Mongillo M, Marks AR. Stressed out: the skeletal muscle ryanodine receptor as a target of stress. J Clin Invest. 2008;118(2):445-453.

Endo M. Calcium-induced calcium release in skeletal muscle. Physiol Rev. 2009;89:1153-1176.

Murayama T, Kurebayashi N. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: Possible roles in excitationecontraction coupling and other processes. Progress in Biophys. and Mol. Biol. 2010:1-10.

Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198-205.

Islam MS. The ryanodine receptor calcium channel of beta-cells: molecular regulation and physiological significance. Diabetes. 2002;51:1299-1309.

Zhou H, Lillis S, Loy RE. Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscular Disorders. 2010;20:166-173.

Rosenberg H, Davis M, James D. Malignant Hiperthermia. Orphanet encyclopedia. 2004:1-14.

Litman RS, Rosenberg H. Malignant Hyperthermia: Update on Susceptibility Testing. Am Med Assoc. 2005;293(23):2918- 2924.

Amaral JLG, Carvalho RB, Cunha LBP. Hipertermia Maligna. Projeto Diretrizes. 2009.

Parness J, Bandschapp O, Girard T. The myotonias and susceptibility to malignant hyperthermia. Anesth Analg. 2009;109(4):1054-1064.

Ali SZ, Taguchi A, Rosenberg H. Malignant hyperthermia. Best Pract Res Clin Anaesthesiol. 2003;17(4):519-533.

Hopkins PM. Malignant hyperthermia: advances in clinical management and diagnosis. Br J Anaesth,. 2000;85(1):118-128.

Silva HCA, Bahia VS, Oliveira RAA. Susceptibilidade à hipertermia maligna em três pacientes com síndrome maligna por neurolépticos. Arq Neuropsiquiatr. 2000;58(3):713-719.

Hernandez JF, Secrest JA, Hill L. Scientific advances in the genetic understanding and diagnosis of malignant hyperthermia. J PeriAnesth Nur. 2009;24(1):19-34.

Hors CP, Garicochea B. Bases genéticas da hipertermia maligna. Rev Bras Anestesiol. 1999;49(4):277-281.

Rosenberg H, Antognini JF, Muldoon S. Testing for malignant hyperthermia. Anesthesiol. 2002;96:232-237.

Krause T, Gerbershagen MU, Fiege M. Dantroleno: a review of its pharmacology, therapeutic use, and new developments. Anaesth. 2004;59:364-373.

Lin CM, Neeru S, Doufas AG. Dantroleno reduces the threshold and gain for shivering. Anesth Analg. 2004;98(5):1318-24.

Hadad E, Cohen-Sivan Y, Heled Y. Clinical review: treatment of heat stroke: should dantroleno be considered?. Crit Care. 2005;9(1):86-91.

Muehlschlegel S, Sims JR. Dantroleno: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit. Neurocrit Care. 2009;10(1):103-115.

Thorell WE, Leibrock LG, Agrawal SK. Role of RyRs and IP3 receptors after traumatic injury to spinal cord white matter. J Neurotrauma. 2002;19(3):335-342.

Gronert GA, Antognini JF, Pessah IN. Malignant hyperthermia. Anesth. 2000:1033-1052.

5dd28e6a0e8825321bc63493 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections