Atualização das diretrizes de ressuscitação cardiopulmonar de interesse ao anestesiologista
Update on cardiopulmonary resuscitation guidelines of interest to anesthesiologists
Luiz Fernando dos Reis Falcão; David Ferez; José Luiz Gomes do Amaral
Resumo
Palavras-chave
Abstract
Keywords
Referências
Stiell IG, Wells GA, Field B. Advanced cardiac life support in out-of-hospital cardiac arrest. N Engl J Med. 2004;351:647-656.
Chan RPC, Auler Jr JOC. Estudo restrospectivo da incidência de óbitos anestésico-cirúrgicos nas primeiras 24 horas: Revisão de 82.641 anestesias. Rev Bras Anestesiol. 2002;52:719-727.
Pedersen T. Complications and death following anaesthesia: Aprospective study with special reference to the influence of patient-anaesthesia and surgery-related risk factors. Dan Med Bull. 1994;41:319- 331.
Braz LG, Braz JRC, Módolo NSP. Incidência de parada cardíaca durante anestesia, em hospital universitário de atendimento terciário: Estudo prospectivo entre 1996 e 2002. Rev Bras Anestesiol. 2004;54(6):755-768.
Timerman S, Gonzalez MMC, Ramires JAF. Rumo ao consenso internacional de ressuscitação cardiopulmonar e cuidados cardiovasculares de emergência 2010 da Aliança Internacional dos Comitês de Ressuscitação. Rev Bras Clin Med. 2010;8(3):228-37.
Berg RA, Hemphill R, Abella BS. Adult Basic life support: 2010 American Heart Association guidelines for cardiopulmonary ressuscitation and emergency cardiovascular care. Circulation. 2010;122(^s3):S685-S705.
Christenson J, Andrusiek D, Everson-Stewart S. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation. 2009;120:1241-1247.
Berdowski J, Beekhuis F, Zwinderman AH. Importance of the first link: description and recognition of an out-ofhospitalcardiac arrest in an emergency call. Circulation. 2009;119:2096-2102.
Lapostolle F, Le Toumelin P, Agostinucci JM. Basic cardiac life support providers checking the carotid pulse: performance, degree of conviction, and influencing factors. Acad Emerg Med. 2004;11:878- 880.
Ochoa FJ, Ramalle-Gomara E, Carpintero JM. Competence of health professionals to check the carotid pulse. Resuscitation. 1998;37:173-175.
Olasveengen TM, Wik L, Steen PA. Standard basic life support vs. continuous chest compressions only in out-of-hospital cardiac arrest. Acta Anaesthesiol Scand. 2008;52:914-919.
Ong ME, Ng FS, Anushia P. Comparison of chest compression only and standard cardiopulmonary resuscitation for out-of-hospital cardiac arrest in Singapore. Resuscitation. 2008;78:119-126.
Bohm K, Rosenqvist M, Herlitz J. Survival is similar after standard treatment and chest compression only in out-ofhospital bystander cardiopulmonary resuscitation. Circulation. 2007;116:2908-2912.
Sugerman NT, Edelson DP, Leary M. Rescuer fatigue during actual in-hospital cardiopulmonary resuscitation with audiovisual feedback: a prospective multicenter study. Resuscitation. 2009;80:981-984.
Manders S, Geijsel FE. Alternating providers during continuous chest compressions for cardiac arrest: every minute or every two minutes?. Resuscitation. 2009;80:1015-1018.
Heidenreich JW, Berg RA, Higdon TA. Rescuer fatigue: standard versus continuous chest-compression cardiopulmonary resuscitation. Acad Emerg Med. 2006;13:1020-1026.
Rhee P, Kuncir EJ, Johnson L. Cervical spine injury is highly dependent on the mechanism of injury following blunt and penetrating assault. J Trauma. 2006;61:1166-1170.
Lowery DW, Wald MM, Browne BJ. Epidemiology of cervical spine injury victims. Ann Emerg Med. 2001;38:12-16.
Milby AH, Halpern CH, Guo W. Prevalence of cervical spinal injury in trauma. Neurosurg Focus. 2008;25.
Mithani SK, St-Hilaire H, Brooke BS. Predictable patterns of intracranial and cervical spine injury in craniomaxillofacial trauma: analysis of 4786 patients. Plast Reconstr Surg. 2009;123:1293-1301.
Hackl W, Hausberger K, Sailer R. Prevalence of cervical spine injuries in patients with facial trauma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:370-376.
Holly LT, Kelly DF, Counelis GJ. Cervical spine trauma associated with moderate and severe head injury: incidence, risk factors, and injury characteristics. J Neurosurg Spine. 2002;96:285-291.
Demetriades D, Charalambides K, Chahwan S. Nonskeletal cervical spine injuries: epidemiology and diagnostic pitfalls. J Trauma. 2000;48:724-727.
Rhee P, Kuncir EJ, Johnson L. Cervical spine injury is highly dependent on the mechanism of injury following blunt and penetrating assault. J Trauma. 2006;61:1166-1170.
Baskett P, Nolan J, Parr M. Tidal volumes which are perceived to be adequate for resuscitation. Resuscitation. 1996;31:231-234.
Berg RA, Kern KB, Hilwig RW. Assisted ventilation does not improve outcome in a porcine model of single-rescuer bystander cardiopulmonary resuscitation. Circulation. 1997;95:1635-1641.
Berg RA, Kern KB, Hilwig RW. Assisted ventilation during 'bystander' CPR in a swine acute myocardial infarction model does not improve outcome. Circulation. 1997;96:4364-4371.
Tang W, Weil MH, Sun S. Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation. Am J Respir Crit Care Med. 1994;150(6):1709-1713.
Wenzel V, Keller C, Idris AH. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: good ventilation, less risk?. Resuscitation. 1999;43:25-29.
Dorges V, Ocker H, Hagelberg S. Smaller tidal volumes with room-air are not sufficient to ensure adequate oxygenation during bag-valve-mask ventilation. Resuscitation. 2000;44:37-41.
Dorges V, Ocker H, Hagelberg S. Optimisation of tidal volumes given with self-inflatable bags without additional oxygen. Resuscitation. 2000;43:195-199.
Berg MD, Idris AH, Berg RA. Severe ventilatory compromise due to gastric distention during pediatric cardiopulmonary resuscitation. Resuscitation. 1998;36:71-73.
Garnett AR, Ornato JP, Gonzalez ER. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA. 1987;257:512-515.
Aufderheide TP, Sigurdsson G, Pirrallo RG. Hyperventilationinduced hypotension during cardiopulmonary resuscitation. Circulation. 2004;109:1960-1965.
Sayre MR, Berg RA, Cave DM. Hands-only (compressiononly) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation. 2008;117:2162-2167.
Berg RA, Sanders AB, Kern KB. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001;104:2465-2470.
Kern KB, Hilwig RW, Berg RA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation. 2002;105:645-649.
Kitamura T, Iwami T, Kawamura T. Conventional and chestcompression- only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. 2010.
Berg RA, Hilwig RW, Kern KB. "Bystander" chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless "cardiac arrest.". Circulation. 2000;101:1743- 1748.
McNelis U, Syndercombe A, Harper I. The effect of cricoid pressure on intubation facilitated by the gum elastic bougie. Anaesthesia. 2007;62:456-459.
Harry RM, Nolan JP. The use of cricoid pressure with the intubating laryngeal mask. Anaesthesia. 1999;54:656-659.
Noguchi T, Koga K, Shiga Y. The gum elastic bougieeases tracheal intubation while applying cricoid pressure compared to a stylet. Can J Anaesth. 2003;50:712-717.
Asai T, Murao K, Shingu K. Cricoid pressure applied after placement of laryngeal mask impedes subsequent fibreoptic tracheal intubation through mask. Br J Anaesth. 2000;85:256-261.
Snider DD, Clarke D, Finucane BT. The "BURP" maneuver worsens the glottic view when applied in combination with cricoid pressure. Can J Anaesth. 2005;52:100-104.
Smith CE, Boyer D. Cricoid pressure decreases ease of tracheal intubation using fibreoptic laryngoscopy (WuScope System). Can J Anaesth. 2002;49:614-619.
Asai T, Barclay K, Power I. Cricoid pressure impedes placement of the laryngeal mask airway and subsequent tracheal intubation through the mask. Br J Anaesth. 1994;72:47-51.
Eftestol T, Wik L, Sunde K. Effects of cardiopulmonary resuscitation on predictors of ventricular fibrillation defibrillation success during out-of-hospital cardiac arrest. Circulation. 2004;110:10-15.
Bobrow BJ, Clark LL, Ewy GA. Minimally interrupted cardiac resuscitation by emergency medical services for out-of-hospital cardiac arrest. JAMA. 2008;299:1158 -1165.
Rea TD, Helbock M, Perry S. Increasing use of cardiopulmonary resuscitation during out-ofhospital ventricular fibrillation arrest: survival implications of guideline changes. Circulation. 2006;114:2760- 2765.
Berg MD, Samson RA, Meyer RJ. Pediatric defibrillation doses often fail to terminate prolonged out-ofhospital ventricular fibrillation in children. Resuscitation. 2005;67:63-67.
Rodriguez-Nunez A, Lopez-Herce J, Garcia C. Pediatric defibrillation after cardiac arrest: initial response and outcome. Crit Care. 2006;10.
Tibballs J, Carter B, Kiraly NJ. External and internal biphasic direct current shock doses for pediatric ventricular fibrillation and pulseless ventricular tachycardia. Pediatr Crit Care Med. 2011;12(1):14- 20.
Atkins DL, Hartley LL, York DK. Accurate recognition and effective treatment of ventricular fibrillation by automated external defibrillators in adolescents. Pediatrics. 1998;101:393-397.
Rossano JW, Quan L, Kenney MA. Energy doses for treatment of out-of-hospital pediatric ventricular fibrillation. Resuscitation. 2006;70:80-89.
Gurnett CA, Atkins DL. Successful use of a biphasic waveform automated external defibrillator in a high-risk child. Am J Cardiol. 2000;86:1051-1053.
Atkins DL, Jorgenson DB. Attenuated pediatric electrode pads for automated external defibrillator use in children. Resuscitation. 2005;66:31-37.
England H, Hoffman C, Hodgman T. Effectiveness of automated external defibrillators in high schools in greater Boston. Am J Cardiol. 2005;95:1484-1486.
Boodhoo L, Mitchell AR, Bordoli G. Cardioversion of persistent atrial fibrillation: a comparison of two protocols. Int J Cardiol. 2007;114:16-21.
Brazdzionyte J, Babarskiene RM, Stanaitiene G. Anterior-posterior versus anterior-lateral electrode position for biphasic cardioversion of atrial fibrillation. Medicina. 2006;42:994-998.
Chen CJ, Guo GB. External cardioversion in patients with persistent atrial fibrillation: a reappraisal of the effects of electrode pad position and transthoracic impedance on cardioversion success. Jpn Heart J. 2003;44:921-932.
Stanaitiene G, Babarskiene RM. Impact of electrical shock waveform and paddle positions on efficacy of direct current cardioversion for atrial fibrillation. Medicina. 2008;44:665-672.
Krasteva V, Matveev M, Mudrov N. Transthoracic impedance study with large self-adhesive electrodes in two conventional positions for defibrillation. Physiol Meas. 2006;27:1009-1022.
Manegold JC, Israel CW, Ehrlich JR. External cardioversion of atrial fibrillation in patients with implanted pacemaker or cardioverterdefibrillator systems: a randomized comparison of monophasic and biphasic shock energy application. Eur Heart J. 2007;28:1731-1738.
Alferness CA. Pacemaker damage due to external countershock in patients with implanted cardiac pacemakers. Pacing Clin Electrophysiol. 1982;5:457-458.
Liu Y, Rosenthal RE, Haywood Y. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29:1679-1686.
Zwemer CF, Whitesall SE, D'Alecy LG. Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation. 1994;27:159-170.
Lipinski CA, Hicks SD, Callaway CW. Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation. 1999;42:221-229.
Bailey AR, Hett DA. The laryngeal mask airway in resuscitation. Resuscitation. 1994;28:107-110.
Dorges V, Wenzel V, Knacke P. Comparison of different airway management strategies to ventilate apneic, nonpreoxygenated patients. Crit Care Med. 2003;31:800-804.
Wong ML, Carey S, Mader TJ. Time to invasive airway placement and resuscitation outcomes after inhospital cardiopulmonary arrest. Resuscitation. 2010;81:182-186.
Stone BJ, Chantler PJ, Baskett PJ. The incidence of regurgitation during cardiopulmonary resuscitation: a comparison between the bag valve mask and laryngeal mask airway. Resuscitation. 1998;38:3-6.
The use of the laryngeal mask airway by nurses during cardiopulmonary resuscitation: results of a multicentre trial. Anaesthesia. 1994;49:3-7.
Samarkandi AH, Seraj MA, el Dawlatly A. The role of laryngeal mask airway in cardiopulmonary resuscitation. Resuscitation. 1994;28:103-106.
Rumball CJ, MacDonald D. The PTL, Combitube, laryngeal mask, and oral airway: a randomized prehospital comparative study of ventilatory device effectiveness and cost-effectiveness in 470 cases of cardiorespiratory arrest. Prehosp Emerg Care. 1997;1:1-10.
Tanigawa K, Shigematsu A. Choice of airway devices for 12,020 cases of nontraumatic cardiac arrest in Japan. Prehosp Emerg Care. 1998;2:96-100.
Silvestri S, Ralls GA, Krauss B. The effectiveness of out-of-hospital use of continuous end-tidal carbon dioxide monitoring on the rate of unrecognized misplaced intubation within a regional emergency medical services system. Ann Emerg Med. 2005;45:497-503.
Tong YL, Sun M, Tang WH. The tracheal detecting-bulb: a new device to distinguish tracheal from esophageal intubation. Acta Anaesthesiol Sin. 2002;40:159-163.
Kolar M, Krizmaric M, Klemen P. Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care. 2008;12.
Grmec S, Mally S. Timeliness of administration of vasopressors in CPR. Crit Care. 2009;13.
Pokorna M, Necas E, Kratochvil J. A sudden increase in partial pressure end-tidal carbon dioxide (P(ET)CO(2)) at the moment of return of spontaneous circulation. J Emerg Med. 2009;38:614-621.
Grmec S, Krizmaric M, Mally S. Utstein style analysis of out-ofhospital cardiac arrest- bystander CPR and end expired carbon dioxide. Resuscitation. 2007;72:404-414.
Connick M, Berg RA. Femoral venous pulsations during open-chest cardiac massage. Ann Emerg Med. 1994;24:1176 -1179.
Okamoto H, Hoka S, Kawasaki T. Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: correlation with cardiac output and haemoglobin concentration. Acta Anaesthesiol Scand. 1995;39:79-84.
Cantineau JP, Merckx P, Lambert Y. Effect of epinephrine on end-tidal carbon dioxide pressure during prehospital cardiopulmonary resuscitation. Am J Emerg Med. 1994;12:267-270.
Grmec S, Kupnik D. Does the Mainz Emergency Evaluation Scoring (MEES) in combination with capnometry (MEESc) help in the prognosis of outcome from cardiopulmonary resuscitation in a prehospital setting?. Resuscitation. 2003;58:89-96.
Nakatani K, Yukioka H, Fujimori M. Utility of colorimetric endtidal carbon dioxide detector for monitoring during prehospital cardiopulmonary resuscitation. Am J Emerg Med. 1999;17:203-206.
Halperin HR, Tsitlik JE, Gelfand M. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med. 1993;329:762- 768.
Paradis NA, Martin GB, Rivers EP. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106-1113.
Rivers EP, Martin GB, Smithline H. The clinical implications of continuous central venous oxygen saturation during human CPR. Ann Emerg Med. 1992;21:1094-1101.
Memtsoudis SG, Rosenberger P, Loffler M. The usefulness of transesophageal echocardiography during intraoperative cardiac arrest in noncardiac surgery. Anesth Analg. 2006;102:1653-1657.
Niendorff DF, Rassias AJ, Palac R. Rapid cardiac ultrasound of inpatients suffering PEA arrest performed by nonexpert sonographers. Resuscitation. 2005;67:81- 87.
Tayal VS, Kline JA. Emergency echocardiography to detect pericardial effusion in patients in PEA and near-PEA states. Resuscitation. 2003;59:315-318.
Yakaitis RW, Otto CW, Blitt CD. Relative importance of alpha and beta and adrenergic receptors during resuscitation. Crit Care Med. 1979;7:293-296.
Michael JR, Guerci AD, Koehler RC. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation. 1984;69:822-835.
Aung K, Htay T. Vasopressin for cardiac arrest: a systematic review and meta-analysis. Arch Intern Med. 2005;165:17-24.
Engdahl J, Bang A, Lindqvist J. Can we define patients with no and those with some chance of survival when found in asystole out of hospital?. Am J Cardiol. 2000;86:610-614.
Engdahl J, Bang A, Lindqvist J. Factors affecting short- and long-term prognosis among 1069 patients with out-of-hospital cardiac arrest and pulseless electrical activity. Resuscitation. 2001;51:17-25.
Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion presssure. JAMA. 1991;266:2121-2126.
Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227:754- 756.
van Walraven C, Stiell IG, Wells GA. Do advanced cardiac life support drugs increase resuscitation rates from in-hospital cardiac arrest?: The OTAC Study Group. Ann Emerg Med. 1998;32:544 -553.