Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942010000500006
Brazilian Journal of Anesthesiology
Scientific Article

Anestesia peribulbar com ropivacaína: estudo da ação vasoconstritora

Ropivacaine in peribulbar anesthesia: vasoconstrictive properties

Catia Sousa Govêia; Edno Magalhãe

Downloads: 0
Views: 1091

Resumo

JUSTIFICATIVA E OBJETIVOS: A anestesia peribulbar pode reduzir o fluxo sanguíneo ocular (FSO) por elevação da pressão intraocular (PIO) ou ação de fármacos. A ropivacaína tem baixa toxicidade e ação vasoconstritora intrínseca ainda não comprovada sobre vasculatura ocular. Medidas da amplitude de pulso ocular (APO) permitem avaliação indireta do FSO. O objetivo deste estudo é avaliar, via FSO, a ação vasoconstritora da ropivacaína em anestesia peribulbar. MÉTODO: Quarenta olhos submetidos a bloqueio peribulbar com 7 mL de solução anestésica, sem vasoconstritor, foram separados aleatoriamente em dois grupos: ropivacaína (n = 20) e bupivacaína (n = 20). Foram avaliados PIO, pressão de perfusão ocular (PPO), APO, variáveis hemodinâmicas e grau de acinesia antes e aos 5 e 10 minutos após bloqueio peribulbar. Para avaliação dos parâmetros oculares, utilizou-se tonômetro de contorno dinâmico. A sedação foi idêntica nos dois grupos. RESULTADOS: Não houve variação significativa dos parâmetros hemodinâmicos e da intensidade de bloqueio motor entre os grupos. Aos 5 e 10 minutos houve diferença de PIO, PPO e APO entre os grupos (p < 0,05). A variação da PIO aos 5 e 10 minutos foi, respectivamente, de -0,88% e -4,54% com ropivacaína e 17,61% e 16,56% com bupivacaína. A alteração da PPO após 5 e 10 minutos foi de 1,5% e 4,2% com ropivacaína, e de -7% e -6% com bupivacaína. A APO variou -55,59% e -59,67% com ropivacaína aos 5 e 10 minutos, e -34,71% e -28,82% com bupivacaína. CONCLUSÕES: A ropivacaína reduziu mais intensamente a amplitude de pulso ocular, apesar das pequenas alterações de PIO e PPO. A diminuição do fluxo sanguíneo ocular pela ropivacaína pode ser atribuída ao seu efeito vasoconstritor

Palavras-chave

ANESTÉSICOS, Local, TÉCNICAS ANESTÉSICAS, Regional, TÉCNICAS DE MEDIÇÃO

Abstract

BACKGROUND AND OBJECTIVES: Peribulbar anesthesia can reduce ocular blood flow (OBF) by increasing intraocular pressure (IOP) or due to the action of drugs. Ropivacaine has low toxicity and intrinsic vasoconstrictive properties, yet to be proven on the ocular vasculature. Measurements of ocular pulse amplitude (OPA) allow the indirect evaluation of the OBF. The objective of the present study was to evaluate through the OBF the vasoconstrictive properties of ropivacaine in peribulbar anesthesia. METHODS: Forty eyes undergoing peribulbar anesthesia with 7 mL of anesthetic solution without vasoconstrictor were randomly divided into two groups: ropivacaine (n = 20) and bupivacaine (n = 20). The IOP, ocular perfusion pressure (OPP), OPA, hemodynamic parameters, and the degree of akinesia before and 5 and 10 minutes after the blockade were evaluated. A dynamic contour tonometer was used to evaluate ocular parameters. Sedation was similar in both groups. RESULTS: A significant variation in hemodynamic parameters and intensity of the motor blockade was not observed between groups. Differences in IOP, OPP, and OPA (p < 0.05) were observed between both groups at 5 and 10 minutes. The variation of IOP at 5 and 10 minutes was -0.88% and -4.54%, respectively with ropivacaine, and 17.61% and 16.56% with bupivacaine. The change in OPP after 5 and 10 minutes was 1.5% and 4.2% with ropivacaine, and -7% and -6% with bupivacaine. Ocular pulse amplitude varied -55.59% and -59.67% with ropivacaine at 5 and 10 minutes, and -34.71% and -28.82% with bupivacaine. CONCLUSIONS: Ropivacaine reduced more intensely the ocular pulse amplitude despite little changes in IOP and OPP. The reduction in ocular blood flow caused by ropivacaine can be attributed to its vasoconstrictive effect

Keywords

ANESTHESICS, Local, ANESTHESICS TECHNICS, Regional, MEASUREMENT TECHNICS

References

Donlon JV, Doyle DJ, Feldman MA. Anesthesia for Eye, Ear, Nose, and Throat Surgery. Anesthesia. 2005.

Chang BY, Hee WC, Ling R. Local anaesthetic techniques and pulsatile ocular blood flow. Br J Ophthalmol. 2000;84:1260-1263.

Pianka P, Padova HW, Lazar M. Effect of sub-Tenon's and peribulbar anesthesia on intraocular pressure and ocular pulse amplitude. J Cataract Refract Surg. 2001;27:1221-1226.

Harris A, Jonescu-Cuypers C, Kagemann L. Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism. 2003.

Garzozi HJ, Shoham N, Chung HS. Ocular blood flow measurements and their importance in glaucoma and age-related macular degeneration. Isr Med Assoc J. 2001;3:443-448.

Dahl JB, Simonsen L, Mogensen T. The effect of 0.5% ropivacaine on epidural blood flow. Acta Anaesthesiol Scand. 1990;34:308-310.

Cederholm I, Evers E, Lofstrom JB. Skin blood flow after intradermal injection of ropivacaine in various concentrations with and without epinephrine evaluated by laser Doppler flowmetry. Reg Anesth. 1992;17:322-328.

Ishiyama T, Dohi S, Iida H. The effects of topical and intravenous ropivacaine on canine pial microcirculation. Anesth Analg. 1997;85:75-81.

Wienzek H, Freise H, Giesler I. Altered blood flow in terminal vessels after local application of ropivacaine and prilocaine. Reg Anesth Pain Med. 2007;32:233-239.

Kopacz DJ, Carpenter RL, Mackey DC. Effect of ropivacaine on cutaneous capillary blood flow in pigs. Anesthesiology. 1989;71:69-74.

Iida H, Watanabe Y, Dohi S. Direct effects of ropivacaine and bupivacaine on spinal pial vessels in canine: assessment with closed spinal window technique. Anesthesiology. 1997;87:75-81.

Findl O, Dallinger S, Menapace R. Effects of peribulbar anesthesia on ocular blood flow in patients undergoing cataract surgery. Am J Ophthalmol. 1999;127:645-649.

Watkins R, Beigi B, Yates M. Intraocular pressure and pulsatile ocular blood flow after retrobulbar and peribulbar anaesthesia. Br J Ophthalmol. 2001;85:796-798.

Calenda E, Rey N, Compere V. Peribulbar anesthesia leading to central retinal artery occlusion. J Clin Anesth. 2009;21:311-312.

Magalhães E, Govêia CS, Oliveira KB. Bupivacaína racêmica, levobupivacaína e ropivacaína em anestesia loco regional para oftalmologia: um estudo comparativo. Rev Assoc Med Bras. 2004;50:195-198.

Hayreh SS. Blood flow in the optic nerve and factors that may influence it. Prog Retin Eye Res. 2001;20:595-624.

Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with Goldmann applanation tonometry. Invest Ophthalmol Vis Sci. 2004;45:3118-3121.

Hanratty M. The dynamic Pascal contour tonometer. Optician. 2004;22.

Erickson DH, Goodwin D, Rollins M. Comparison of dynamic contour tonometry and Goldmann applanation tonometry and their relationship to corneal properties, refractive error, and ocular pulse amplitude. Optometry. 2009;80:169-174.

Nicoll JM, Treuren B, Acharya PA. Retrobulbar anesthesia: the role of hyaluronidase. Anesth Analg. 1986;65:1324-1328.

Bosley TM, Cohen MS, Gee W. Amplitude of the ocular pneumoplethysmography waveform is correlated with cardiac output. Stroke. 1993;24:6-9.

Alm A, Bill A. Ocular and optic nerve flow at normal and increased intraocular pressure in monkeys (Macaca irus): a study with radioactive labelled microespheres including flow determination in brain and some other tissues. Exp Eye Res. 1973;15.

OBrien C, Harris A. Optic nerve blood flow measurement. Ophthalmology. 2004.

Nicolela MT. Fluxo sanguíneo ocular em glaucoma: métodos de avaliação e importância. Arq Bras Oftamol. 1997;60:639-649.

Langham ME, McCarthy E. A rapid pneumatic applanation tonometer: comparative findings and evaluation. Arch Ophthalmol. 1968;79:389-399.

Krakau CET. Calculation of the pulsatile ocular blood flow. Invest Ophthalmol Vis Sci. 1992;33:2754-2756.

Mori F, Konno S, Hikichi T. Factors affecting pulsatile ocular blood flow in normal subjects. Br J Ophthalmol. 2001;85:529-532.

Lung S, Luksch A, Weigert G. Influence of infusion volume on the ocular hemodynamic effects of peribulbar anesthesia. J Cataract Refract Surg. 2006;32:1509-1512.

Meyer P, Flammer J, Luscher TF. Local anesthetic drugs reduce endothelium-dependent relaxation of porcine ciliary arteries. Invest Ophthalmol Vis Sci. 1993;34:2730-2736.

Burke D, Joypaul V, Thomson MF. Circumcision supplemented by dorsal penile nerve block with 0.75% ropivacaine: a complication. Reg Anesth Pain Med. 2000;25:424-427.

Brockway MS, Bannister J, McClure JH. Comparison of extradural ropivacaine and bupivacaine. Br J Anaesth. 1991;66:31-37.

Ripart J, Nouvellon E, Chaumeron A. Regional anesthesia for eye surgery. Reg Anesth Pain Med. 2005;30:72-82.

Wood MB, Rubin AP. A comparison of epidural 1% ropivacaine and 0.75% bupivacaine for lower abdominal gynaecological surgery. Anesth Analg. 1993;76:1274-1278.

Griffin RP, Reynolds F. Extradural anaesthesia for caesarian section: a double-blind comparison of 0.5% ropivacaine and 0.5% bupivacaine. Br J Anaesth. 1995;74:512-516.

Huha T, Ala-Kokko TI, Salomaki T. Clinical efficacy and pharmacokinetics of 1% ropivacaine and 0.75% bupivacaine in peribulbar anaesthesia for cataract surgery. Anaesthesia. 1999;54:137-141.

Gioia L, Fanelli G, Casati A. A prospective, randomized, doubleblinded comparison of ropivacaine 0.5%, 0.75%, and 1% ropivacaine for peribulbar block. J Clin Anesth. 2004;16:184-188.

Hulbert MF, Yang YC, Pennefather PM. Pulsatile ocular blood flow and intraocular pressure during retrobulbar injection of lignocaine: influence of additives. J Glaucoma. 1998;7:413-416.

Grunwald JE, Piltz J, Hariprasad SM. Optic nerve and choroidal circulation in glaucoma. . .

Fuchsjager-Mayrl G, Wally B, Georgopoulos M. Ocular blood flow and systemic blood pressure in patients with primary open angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 2004;45:834-839.

Schmidt KG, von Ruckmann A, Kemkes-Matthes B. Ocular pulse amplitude in diabetes mellitus. Br J Ophthalmol. 2000;84:1282-1284.

Murphy DF. Anesthesia and intraocular pressure. Anesth Analg. 1985;64:520-530.

Polak K, Polska E, Luksch A. Choroidal blood flow and arterial blood pressure. Eye. 2003;17:84-88.

Hoffmann EM, Grus FH, Pfeiffer N. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry. BMC Ophthalmology. 2004;4:1-7.

Kaufmann C, Bachmann LM, Robert YC. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol. 2006;124:1104-1108.

Kaufmann C. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol. 2006;124:1104-1108.

Riva CE, Titze P, Hero M. Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci. 1997;38:1752-1760.

Mittag TW, Serle J, Schumer R. Studies of the ocular pulse in primates. Surv Ophthalmol. 1994;38:183-190.

Schmetterer L, Dallinger S, Findl O. Noninvasive investigations of the normal ocular circulation in humans. Invest Ophthalmol Vis Sci. 1998;39:1210-1220.

Nociti JR, Serzedo PS, Zuccolotto EB. Ropivacaine in peribulbar block: a comparative study with bupivacaine. Acta Anaesthesiol Scand. 1999;43:799-802.

Nociti JR, Serzedo PS, Zuccolotto EB. Intraocular pressure and ropivacaine in peribulbar block: a comparative study with bupivacaine. Acta Anaesthesiol Scand. 2001;45:600-602.

Serzedo PS, Nociti JR, Zuccolotto EB. Bloqueio peribulbar com Ropivacaína: influência da hialuronidase sobre a qualidade do bloqueio e a pressão intraocular. Rev Bras Anestesiol. 2001;51:202-207.

Bouaziz H, Iohom G, Estebe JP. Effects of levobupivacaine and ropivacaine on rat sciatic nerve blood flow. Br J Anaesth. 2005;95:696-700.

Martins CA, Aragão PW, Freire SM. Efeito da ropivacaína na recaptação neuronal de noradrenalina em músculo liso. Rev Bras Anestesiol. 2005;55:532-537.

Iida H, Ohata H, Iida M. The differential effects of stereoisomers of ropivacaine and bupivacaine on cerebral pial arterioles in dogs. Anesth Analg. 2001;93:1552-1556.

Yu J, Tokinaga Y, Kuriyama T. Involvement of Ca2+ sensitization in ropivacaine-induced contraction of rat aortic smooth muscle. Anesthesiology. 2005;103:548-555.

Sung HJ, Sohn JT, Park JY. Direct effect of ropivacaine involves lipoxygenase pathway activation in rat aortic smooth muscle. Can J Anaesth. 2009;56:298-306.

Guyton AC, Hall JE. Tratado de fisiologia médica. 2006.

Newton DJ, McLeod GA, Khan F. Mechanisms influencing the vasoactive effects of lidocaine in human skin. Anaesthesia. 2007;62:146-150.

Riva CE, Titze P, Hero M. Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci. 1997;38:2338-2343.

Bosem ME, Lusky M, Weinreb RN. Short-term effects of levobunolol on ocular pulsatile flow. Am J Ophthalmol. 1992;114:280-286.

Huber KK, Remky A. Effect of retrobulbar versus subconjunctival anesthesia on retrobulbar hemodynamics. Br J Ophthalmol. 2005;89:719-723.

Nicholson G, Sutton B, Hall GM. Ropivacaine for peribulbar anesthesia. Reg Anesth Pain Med. 1999;24:337-340.

5dcead2f0e8825ec67bf58f1 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections