Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942009000500003
Brazilian Journal of Anesthesiology
Scientific Article

Avaliação pulmonar em crianças portadoras de cardiopatia congênita acianótica e hiperfluxo pulmonar através de tomografia computadorizada

Computed tomography in pulmonary evaluation of children with acyanotic congenital heart defect and pulmonary hyperflow

Solange Gimenez; Mariana Limeira Teixeira; Rodrigo Myashiro; Maria José Carvalho Carmona; José Otávio Costa Auler Jr; Luiz Marcelo Sá Malbouisson

Downloads: 1
Views: 1059

Resumo

JUSTIFICATIVA E OBJETIVOS: Disfunção respiratória é frequente em crianças com cardiopatias congênitas acianóticas com hiperfluxo pulmonar (CCAHP), porém pouco é conhecido sobre a estrutura pulmonar destes pacientes. O objetivo deste estudo foi quantificar os volumes de gás e tecido e a distribuição da aeração pulmonar nesta população. MÉTODOS: Após aprovação do Comitê de Ética institucional e obtenção do consentimento escrito pós-informado, foram obtidas tomografias computadorizadas torácicas em sete crianças com CCAHF. As imagens pulmonares direita e esquerda foram contornadas em todas as imagens e os volumes e pesos pulmonares foram computados a partir dos dados volumétricos. As comparações entre esquerda e direita foram analisadas usando teste t de Student pareado e as correlações através de regressão exponencial. RESULTADOS: A idade mediana foi 20 meses e o peso foi de 9,9 kg. Volume pulmonar total (VPT) foi de 66,7 ± 23,1 mL.kg-1, o de tecido 33,5 ± 15,7 mL.kg-1 e o de gás 33,1 ± 8,3 mL.kg-1. O pulmão direito representou 57,9% e o pulmão esquerdo 42,1% do VPT (p < 0,001). O volume pulmonar de gás à direita foi 60,5% do volume de gás total (p< 0,001) e a quantidade de parênquima pulmonar normalmente aerado foi significativamente menor à esquerda (27,6 ± 6,8 vs . 18,1 ± 8% p < 0,001). CONCLUSÕES: As crianças portadoras de CCAHP apresentaram aumento no volume de tecido pulmonar maior que o esperado, possivelmente por edema intersticial. A aeração pulmonar está reduzida no pulmão esquerdo pela compressão imposta pelo coração ao pulmão subjacente.

Palavras-chave

COMPLICAÇÕES, DOENÇAS, Congênita, EXAMES COMPLEMENTARES

Abstract

BACKGROUND AND OBJECTIVES: Respiratory dysfunction is common in children with acyanotic congenital heart defects (ACHD) with pulmonary hyperflow; however, little is known about the pulmonary structure of those patients. The objective of this study was to quantify the volumes of air and tissue, as well as the distribution of pulmonary aeration in this population. METHODS: After approval by the Ethics Committee of the institution and signing of an informed consent, seven children with ACHD with pulmonary hyperflow underwent computed tomographies of the chest. All images included the left and right pulmonary contour, and pulmonary volumes and weight were calculated using volumetric data. Paired Student t test was used to compare left and right, and exponential regression was used for correlations. RESULTS: Patients had a mean age of 20 months and weight of 9.9 kg. Total pulmonary volume (TPV) was 66.7 ± 23.1 mL.kg-1, tissue volume of 33.5 ± 15.7 mL.kg-1, and air volume of 33.1 ± 8.3 mL.kg-1. The right lung represented 57.9% of TPV and the left, 42.1% (p < 0.001). The pulmonary volume of air on the right was 60.5% of the total air volume (p < 0.001), and the volume of pulmonary parenchyma normally aerated was significantly lower on the left (27.6 ± 6.8 vs . 18.1 ± 8%, p < 0.001). CONCLUSIONS: The volume of lung tissue was greater than expected in children with ACHD with pulmonary hyperflow, possibly due to interstitial edema. Pulmonary aeration is reduced in the left lung due to the compression of the lung by the heart.

Keywords

COMPLEMENTARY EXAMS, COMPLICATIONS, DISEASES, Congenital

References

Nichols DG, Cameron DE, Greeley WJ. Critical Heart Disease in Infants and Children. 1995.

Rosenthal M, Redington A, Bush A. Cardiopulmonary physiology after surgical closure of asymptomatic secundum atrial septal defects in childhood: Exercise performance is unaffected by age at repair. Eur Heart J. 1997;18:1816-22.

Teitel DF, Iwamoto HS, Rudolph AM. Changes in the pulmonary circulation during birth-related events. Pediatr Res. 1990;27:372-378.

Malbouisson LM, Preteux F, Puybasset L. Validation of a software designed for computed tomographic (CT) measurement of lung water. Intensive Care Med. 2001;27:602-608.

Malbouisson LM, Muller JC, Constantin JM. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163:1444-1450.

Puybasset L, Cluzel P, Chao N. A computed tomography scan assessment of regional lung volume in acute lung injury: The CT Scan ARDS Study Group. Am J Respir Crit Care Med. 1998;158:1644-1655.

Mull RT. Mass estimates by computed tomography: physical density from CT numbers. AJR Am J Roentgenol. 1984;143:1101-1104.

Iwamoto HS, Teitel D, Rudolph AM. Effects of birth-related events on blood flow distribution. Pediatr Res. 1987;22:634-640.

Vincent RN, Lang P, Elixson EM. Measurement of extra-vascular lung water in infants and children after cardiac surgery. Am J Cardiol. 1984;54:161-165.

Puybasset L, Cluzel P, Gusman P. Regional distribution of gas and tissue in acute respiratory distress syndrome: I. Consequences for lung morphology. Intensive Care Med. 2000;26:857-869.

Gattinoni L, Pesenti A, Avalli L. Pressure-volume curve of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Resp Dis. 1987;136:730-736.

Vieira SR, Puybasset L, Richecoeur J. A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med. 1998;158:1571-1577.

Malbouisson LM, Busch CJ, Puybasset L. Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161:2005-2012.

Alexander MS, Arnot RN, Lavender JP. Left lower lobe ventilation and its relation to cardiomegaly and posture. BMJ. 1989;299.

Alexander MS, Peters AM, Cleland JP. Impaired left lower lobe ventilation in patients with cardiomegaly: An isotope study of mechanisms. Chest. 1992;101:1189-1193.

Wiener CM, McKenna WJ, Myers MJ. Left lower lobe ventilation is reduced in patients with cardiomegaly in the supine but not the prone position. Am Rev Respir Dis. 1990;141:150-155.

Beckmann CF, Levin DC, Ulreich S. Cardiomegaly as a cause of nonuniform pulmonary artery perfusion. AJR Am J Roentgenol. 1977;129:661-666.

Benjamin JJ, Cascade PN, Rubenfire M. Left lower lobe atelectasis and consolidation following cardiac surgery: the effect of topical cooling on the phrenic nerve. Radiology. 1982;142:11-14.

Emhardt JD, Moorthy SS, Brown JW. Chest radiograph changes after cardiopulmonary bypass in children. J Cardiovasc Surg (Torino). 1991;32:314-317.

Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity: ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society. Eur Respir J. 1995;8:492-506.

Thurlbeck WM. Lung growth and alveolar multiplication. Pathobiol Annu. 1975;5:1-34.

Wigglesworth JS, Desai R, Aber V. Quantitative aspects of perinatal lung growth. Early Hum Dev. 1987;15:203-212.

Hislop AA, Wigglesworth JS, Desai R. Alveolar development in the human fetus and infant. Early Hum Dev. 1986;13:1-11.

Zeltner TB, Bertacchini M, Messerli A. Morphometric estimation of regional differences in the rat lung. Exp Lung Res. 1990;16:145-158.

Thurlbeck WM. Postnatal human lung growth. Thorax. 1982;37:564-571.

5dd598a50e88256f06c8fca6 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections