Proteção miocárdica pelo pré- e pós-condicionamento anestésico
Myocardial protection by pre- and post-anesthetic conditioning
Rubens Campana Pasqualin; José Otávio Costa Auler Jr.
Resumo
Palavras-chave
Abstract
Keywords
Referências
Mangano DT. Per operative cardiac morbidity. Anesthesiology. 1990;72:153-184.
Bolli R. Mechanism of myocardial "stunning". Circulation. 1990;82:723-738.
Bernier M, Manning AS, Hearse DJ. Reperfusion arrhythmias: dose-related protection by anti-free radical intervention. Am J Physiol. 1989;256:h1344-h1352.
DJ Manning AS, Downey JM, Yellon DM. Xantine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion?. Acta Physiol Scand. 1986;548:65-74.
Warltier DC, Pagel PS, Kersten JR. Approaches to the prevention of per operative myocardial ischemia. Anesthesiology. 2000;92:253-259.
Freedman BM, Hamm DP, Everson CT. Enflurane enhances post ischemic functional recovery in the isolated rat hearts. Anesthesiology. 1985;62:29-33.
Schultz JEJ, Rose E, Yao Z. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol. 1995;268:H2157-2161.
Schultz JEJ, Hsu AK, Gross GJ. Morphine mimics the cardio protection effect of ischemic preconditioning via glibenclamide-sensitive mechanism in the rat heart. Circ Res. 1996;78:1100-1104.
Jennings RD, Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med. 1991;42:225-246.
Sommerschild HT, Kirkeboen KA. Preconditioning: endogenous defense mechanism of the heart. Acta Anesthesiol Scand. 2002;46:123-137.
Du Toit EF, Opie LH. Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion. Circ Res. 1992;70:960-967.
Kusuoka H, Camilion de Hurtado MC. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution. J Am Coll Cardiol. 1993;21:240-248.
Du XJ, Anderson KE, Jacobsen A. Suppression of ventricular arrhythmias during ischemia-reperfusion by agents inhibiting Ins(1,4,5)P3 release. Circulation. 1995;91:2712-2716.
McCormack JG. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem J. 1985;231:581-595.
Zaugg M, Schaub MC. Signaling and cellular mechanisms in cardiac protection by ischemic and pharmacological preconditioning. J Mus Res Cell Mot. 2003;24:219-249.
De Hert SG, Turani F, Mathur S. Cardiac protection with volatile anesthetics and clinical implications. Anesth Analg. 2005;100:1584-1593.
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-1136.
Okubo S, Xi L, Bernardo NL. Myocardial preconditioning: basic concepts and potential mechanisms. Mol Cell Biochem. 1999;196:3-12.
Nakano A, Cohen MV, Downey JM. Ischemic preconditioning: From basic mechanisms to clinical applications. Pharmacol Ther. 2000;86:263-275.
Rubino A, Yellon DM. Ischemic preconditioning of vasculature: an overlooked phenomenon for protecting the heart?. Trends Pharmacol Sci. 2000;21:225-230.
Zaugg M, Lucchinetti E, Ueckler M. Anaesthetics and cardiac preconditioning. Part I: Signaling and cytoprotective mechanisms. Br J Anaesth. 2003;91:551-565.
Bolli R. The late phase of preconditioning. Circ Res. 2000;87:972-983.
Zaugg M, Lucchinetti E, Garcia C. Anaesthetics and cardiac preconditioning: Part II. Clinical implications. Br J Anaesth. 2003;91:566-576.
De Klaver MJ, Manning L, Palmer LA. Isoflurane inhibits cytokine-induced cell death in cultured rat smooth muscle cells and human endothelial cells. Anesthesiology. 2002;97:24-32.
Julier K, da Silva R, Garcia C. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded placebo-controlled multicenter study. Anesthesiology. 2003;98:1315-1327.
Roscoe AK, Christensen JD, Lynch C. Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptor and adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2000;92:1692-1701.
Hanouz JL, Yvon A, Masseti M. Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology. 2002;97:33-41.
Toller WG, Kersten JR, Pagel PS. Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology. 1999;91:1437-1446.
Uecker M, da Silva R, Grampp T. Translocation of protein kinase-C isoforms to sub cellular targets in ischemic and anesthetic preconditioning. Anesthesiology. 2003;99:138-147.
da Silva, Grampp T, Pasch T. Differential activation of mitogen activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology. 2004;100:59-69.
Tanaka K, Weihrauch D, Ludwig LM. Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species. Anesthesiology. 2003;98:935-943.
Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305:147-148.
Nichols CG, Lederer WJ. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol. 1990;423:91-110.
Inoue I, Nagase H, Kishi K. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991;352:244-247.
Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation. 1994;89:1769-1775.
Munch-Ellingsen J, Lokebo JE, Bugge E. 5-HD abolishes ischemic preconditioning independently of monophasic action potential duration in the heart. Basic Res Cardiol. 2000;95:228-234.
Hamada K, Yamazaki J, Nagao T. Shortning of action potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener. J Mol Cell Cardiol. 1998;30:1369-1379.
Inagaki N, Gonoi T, Clement JP IV. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995;270:1166-1170.
Suzuki M, Sasaki N, Miki T. Role of sarcolemal K(ATP) channels in cardio protection against ischemia/reperfusion injury in mice. J Clin Invest. 2002;109:509-516.
dos Santos R, Kowaltowski AJ, Laclau MN. Mechanisms by wich opening the mitochondrial ATP-sensitive K+ channel protect the ischemic heart. Am J Physiol Heart Circ Physiol. 2002;283:H284-295.
Dzeja PP, Holmuhamedov EL, Ozcan C. Mitochondria: gateway for cytoprotection. Circ Res. 2001;89:744-746.
Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel opener prevent Ca++ overload in rat cardiac mitochondria. J Physiol. 1999;519:347-360.
Holmuhamedov EL, Jovanovic S, Dzeja PP. Mitochodrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol Heart Circ Physiol. 1998;275:H1567-1576.
Minners J, Lacerda L, McCarthy J. Ischemic and pharmacological preconditioning in Girard cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Res. 2001;89:787-792.
Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta. 1989;973:355-382.
Garlid KD. Cation transport in mitochondria: the potassium cycle. Biochim Biophys Acta. 1996;1275:123-126.
Garlid KD. On the mechanism of the regulation of the mitochondrial K+/H+ exchanger. J Biol Chem. 1980;255:11273-11279.
Green DR, Reed JC. Mitochondrial and apoptosis. Science. 1998;281:1309-1312.
Akao M, Ohler A, O'Rourke B. Mitochondrial ATP-sensitive K+channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res. 2001;88:1267-1275.
Ozcan C, Bienengraeber M, Dzeja PP. Potassium channel opener protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282:H531-539.
Fryer RM, Eells JT, Hsu AK. Ischemic preconditioning in rats: role of the mitochondrial K(ATP) channel in preservation of the mitochondrial function. Am J Physiol Heart Cir Physiol. 2000;278:H305-312.
Tanonaka K, Taguchi T, Koshimizu M. Role of an ATP-sensitive potassium channel opener, YM934, in mitochondrial energy production in ischemic/reperfused heart. J Pharmacol Exp Ther. 1999;291:710-716.
Novalija E, Kevin LG, Eells JT. Anesthetic preconditioning improves adenosina triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Anesthesiology. 2003;98:1155-1163.
Riess ML, Novalija E, Camara AK. Preconditioning with sevoflurane reduces nicotinamide adenine dinucleotide during ischemia/reperfusion in isolated hearts: Reversal by 5-hydroxydecanoic acid. Anesthesiology. 2003;98:378-395.
Zorov DB, Filburn CR, Klotz LO. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001-1014.
Kroemer G, Reed JC. Mitochondrial control of the cell death. Nat Med. 2000;6:513-9.
Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001;495:12-15.
Hausenloy DJ, Maddock HL, Baxter GF. Inhibiting mitochondrial permeability transition pore: A new paradigm for myocardial preconditioning?. Cardiovasc Res. 2002;55:534-543.
Piriou V, Chiari P, Roesch OG. Effect of desflurane-induced preconditioning on mitochondrial transition pore opening. Anesthesiology. 2003;99:A1538.
Allard MF, Flint JD, English JC. Calcium overload during reperfusion is accelerated in isolated hypertrophied rat hearts. J Mol Cell Cardiol. 1994;26:1551-1563.
Miyamae M, Camacho SA, Weimer MW. Attenuation of post ischemic reperfusion injury is related to prevention of [Ca++] overload in rat hearts. Am J Physiol Heart Circ Physiol. 1996;271:H2145-2153.
Di Lisa F, Bernardi P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem. 1998;184:379-391.
An J, Varadarajan SG, Novalija E. Ischemic and anesthetic preconditioning reduces cytosolic [Ca++] and improves Ca++ responses in intact hearts. Am J Physiol Heart Circ Physiol. 2001;281:H1508-1523.
Varadarajan SG, An J, Novalija E. Sevoflurane before or after ischemia improves contractile and metabolic function while reducing myoplasmatic Ca++ loading in intact hearts. Anesthesiology. 2002;96:125-133.
Wang L, Cherednichenko G, Hernandez L. Preconditioning limits mitochondrial Ca++ during ischemia in rat hearts: Role of K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280:H2321-2328.
Riess ML, Camara AK, Novalija E. Anesthetic preconditioning attenuates mitochondrial Ca++ overload during ischemia in guinea pigs intact hearts: Reversal by 5-hydroxydecanoic acid. Anesth Analg. 2002;95:1540-1546.
Siegmund B, Schlack W, Ladilov YV. Halothane protects cardiomyocites against reoxygenation-induced hyper contracture. Circulation. 1997;96:4372-4379.
Davies LA, Gibson CN, Boyett MR. Effects of isoflurane, sevoflurane and halothane on myofilament Ca++ release in rat ventricular myocites. Anesthesiology. 2000;93:1034-1044.
Zucchi R, Ronca F, Ronca Testoni S. Modulation of sarcoplasmic reticulum function: A new strategy in cardio protection?. Pharmacol Ther. 2001;89:47-65.
Piper HM, Meuter K, Schaefer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg. 2003;75:S644-648.
Mullenhein J, Ebel D, Frassdorf J. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology. 2002;96:934-940.
Tanaka K, Weihrauch D, Khel F. Mechanism of preconditioning by isoflurane in rabbits: a direct role for reactive oxygen species. Anesthesiology. 2002;97:1485-1490.
Kevin LG, Novalija E, Riess ML. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth Analg. 2003;96:949-955.
Hall GM, Kirtland SJ, Baum H. The inhibition of mitochondrial respiration by inhalational anaesthetic agents. Br J Anaesth. 1973;45:1005-1009.
Hanley PJ, Ray J, Brandt U. Halothane, isoflurane and sevoflurane inhibits NADH-ubiquinone oxidoredutase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687-693.
Riess ML, Camara AK, Chen Q. Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. Am J Physiol Heart Circ Physiol. 2002;283:H53-H60.
Riess ML, Eells JT, Kevin LG. Attenuation of mitochondrial respiration by sevoflurane in isolated cardiac mitochondria is mediated in part by reactive oxygen species. Anesthesiology. 2004;100:498-505.
Ludwig LM, Tanaka K, Eells JT. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial eletron transport chain complex III. Anesth Analg. 2004;99:1308-1315.
Piriou V, Chiari P, Gateau-Roesch O. Desflurane-induced preconditioning alters calcium-induced mitochondrial permeability transition. Anesthesiology. 2004;100:581-588.
Vanden Hoeck TL, Shao Z, Li C. Reperfusion injury on cardiac myocytes after simulated ischemia. Am J Physiol. 1996;270:H1334-H1341.
Piper HM, Abdallah Y, Schaefer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004;61:365-371.
Zhao ZQ, Corvera JS, Halkos ME. Inhibition of myocardial injury by ischemic post conditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579-H588.
Kin H, Zhao ZQ, Sun HY. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62:74-85.
Tsang A, Hausenloy DJ, Mocanu MM. Postconditioning: a form of "modified reperfusion" protects the myocardium by activating the phosphatidilinositol 3-kinase-Akt pathway. Circ Res. 2004;95:230-232.
Stadnicka A, Bosnjak ZJ. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemal KATP channel at reduced intracellular pH. Anesthesiology. 2003;98:396-403.
Schlack W, Preckel B, Stunneck D. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth. 1998;81:913-919.
Preckel B, Schlack W, Comfere T. Effecs of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional ischemia in the rabbit heart in vivo. Br J Anaesth. 1998;81:905-912.
Obal D, Preckel B, Scharbatke H. One MAC of sevoflurane provides protection against reperfusion injury in the rat heart in vivo. Br J Anaesth. 2001;87:905-911.
Chiari PC, Bienengraeber M, Pagel OS. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005;102:102-109.
Sack MN, Yellon DM. Insulin therapy as an adjunct to reperfusion after acute coronary ischemia: a proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol. 2003;41:1404-1407.
Yang XM, Krieg T, Cui L. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol. 2004;36:411-421.
Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase inase beta inhibition during reperfusion in intact hearts. Circ Res. 2004;94:960-966.
Heindl B, Reichle FM, Zahler S. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing post ischemic adhesion of polymorphonuclear neutrophils. Anesthesiology. 1999;91:521-530.
Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481-497.