Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942005000500012
Brazilian Journal of Anesthesiology
Review Article

Proteção miocárdica em cirurgia cardíaca

Myocardial protection in cardiac surgery

Luiz Marcelo Sá Malbouisson; Luciana Moraes dos Santos; José Otávio Costa Auler Jr; Maria José Carvalho Carmona

Downloads: 2
Views: 1068

Resumo

JUSTIFICATIVA E OBJETIVOS: A proteção miocárdica define o conjunto de estratégias que objetivam atenuar a intensidade da lesão de isquemia-reperfusão miocárdica durante a cirurgia cardíaca e suas conseqüências sobre a função miocárdica. Um melhor entendimento dos fenômenos fisiopatológicos relacionados à isquemia-reperfusão miocárdica e da cardioproteção promovida por determinados fármacos e técnicas anestésicas tem dado ao anestesiologista papel importante na proteção miocárdica durante o procedimento cirúrgico. O objetivo desta revisão foi abordar os mecanismos de lesão miocárdica e as modalidades de proteção miocárdica com enfoque para a técnica anestésica. CONTEÚDO: São abordados os mecanismos de lesão miocárdica durante os eventos de isquemia-reperfusão e suas conseqüências clínicas assim como às técnicas de proteção realizadas durante a cirurgia cardíaca. Ênfase especial é dada aos fármacos e técnicas anestésicas, como anestésicos halogenados, opióides e fármacos adjuvantes, pois estes têm mostrado efeitos cardioprotetores em cirurgia cardíaca. CONCLUSÕES: A associação de técnica anestésica adequada com agentes anestésicos cardioprotetores às técnicas habituais de proteção miocárdica realizadas pelo cirurgião pode contribuir para prevenção de disfunção miocárdica e promover melhor recuperação no período pós-operatório.

Palavras-chave

ANALGÉSICOS, ANESTÉSICOS, CIRURGIA, COMPLICAÇÕES, COMPLICAÇÕES

Abstract

BACKGROUND AND OBJECTIVES: Myocardial protection defines the set of strategies aiming at attenuating the intensity of myocardial ischemia-reperfusion injury during heart surgery and its harmful consequences on myocardial function. A better understanding of pathophysiological phenomena related to ischemia-reperfusion events and of the anesthetic-induced heart protection has given to the anesthesiologist a major role in intraoperative myocardial protection. The objective of this update was to review the mechanisms of ischemia-reperfusion-induced myocardial injury and myocardial protection modalities focusing on anesthetic techniques. CONTENTS: Ischemia-reperfusion-induced myocardial injury mechanisms and their clinical consequences on heart as well as myocardial protection techniques used during heart surgery are addressed in this review. Special emphasis is given to the role of anesthetic drugs and techniques such as inhaled halogenate anesthetics, opioids and adjuvant anesthetic drugs, since they have been shown to have heart protecting effects during cardiac surgery. CONCLUSIONS: The association of adequate anesthetic technique using heart protecting agents to usual myocardial protection modalities performed by the surgeon may contribute to the prevention of cardiac surgery-induced myocardial dysfunction and improve postoperative outcome.

Keywords

ANALGESICS, ANESTHETICS, COMPLICATIONS, COMPLICATIONS, SURGERY

References

Maroko PR, Kjekshus JK, Sobel BE. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971;43:67-82.

Kloner RA, Rezkalla SH. Cardiac protection during acute myocardial infarction: where do we stand in 2004?. J Am Coll Cardiol. 2004;44:276-286.

Opie LH. Myocardial Reperfusion: New Ischemic Syndromes. The Heart: Physiology, from Cell to Circulation. 1998:563-588.

Opie LH. Oxygen Lack: Ischemia and Angina. The Heart: Physiology, from Cell to Circulation. 1998:515-541.

Marban E, Koretsune Y, Corretti M. Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation. 1989;80:17-22.

Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol. 1997;58:95-117.

Bolli R. Mechanism of myocardial "stunning". Circulation. 1990;82:723-738.

Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43:860-878.

Perrin C, Ecarnot-Laubriet A, Vergely C. Calpain and caspase-3 inhibitors reduce infarct size and post-ischemic apoptosis in rat heart without modifying contractile recovery. Cell Mol Biol. 2003;49:497-505.

Friedrich P. The intriguing Ca2+ requirement of calpain activation. Biochem Biophys Res Commun. 2004;323:1131-1133.

Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609-634.

Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146-1149.

Morales AR, Fine G, Taber RE. Cardiac surgery and myocardial necrosis. Arch Pathol. 1967;83:71-79.

Greaves SC, Rutherford JD, Aranki SF. Current incidence and determinants of perioperative myocardial infarction in coronary artery surgery. Am Heart J. 1996;132:572-578.

Lell WA, Walker DR, Blackstone EH. Evaluation of myocardial damage in patients undergoing coronary-artery bypass procedures with halothane-N2O anesthesia and ajuvants. Anesth Analg. 1977;56:556-563.

Hultgren HN, Miyagawa M, Buch W. Ischemic myocardial injury during cardiopulmonary bypass surgery. Am Heart J. 1973;85:167-176.

Costa MA, Carere RG, Lichtenstein SV. Incidence, predictors, and significance of abnormal cardiac enzyme rise in patients treated with bypass surgery in the arterial revascularization therapies study (ARTS). Circulation. 2001;104:2689-2693.

Mentzer RM Jr. Does size matter? What is your infarct rate after coronary artery bypass grafting?. J Thorac Cardiovasc Surg. 2003;126:326-328.

Karthik S, Grayson AD, Oo AY. A survey of current myocardial protection practices during coronary artery bypass grafting. Ann R Coll Surg Engl. 2004;86:413-415.

Melrose DG, Dreyer B, Bentall HH. Elective cardiac arrest. Lancet. 1955;269:21-22.

Helmsworth JA, Kaplan S, Clark LC. Myocardial injury associated with a systole induced with potassium citrate. Ann Surg. 1959;149:200-206.

Tyers GF, Todd GJ, Niebauer IM. The mechanism of myocardial damage following potassium citrate (Melrose) cardioplegia. Surgery. 1975;78:45-53.

Fremes SE, Christakis GT, Weisel RD. A clinical trial of blood and crystalloid cardioplegia. J Thorac Cardiovasc Surg. 1984;88:726-741.

Robinson LA, Schwarz GD, Goddard DB. Myocardial protection for acquired heart disease surgery: results of a national survey. Ann Thorac Surg. 1995;59:361-372.

Nicolini F, Beghi C, Muscari C. Myocardial protection in adult cardiac surgery: current options and future challenges. Eur J Cardiothorac Surg. 2003;24:986-993.

Flack JE 3rd, Cook JR, May SJ. Does cardioplegia type affect outcome and survival in patients with advanced left ventricular dysfunction? Results from the CABG Patch Trial. Circulation. 2000;102(Supp19):III84-III89.

Hayashida N, Ikonomidis JS, Weisel RD. Adequate distribution of warm cardioplegic solution. J Thorac Cardiovasc Surg. 1995;110:800-812.

Fromes Y, Fischer M, Duffet T. Cardioplégie tiède antérograde intermittente: vers une simplification de la protecion myoquardique en chirurgie coronariene. J Chirurgie Thorac Cardiovasc. 1997;3:11-16.

Rinne T, Harmoinen A, Kaukinen S. Esmolol cardioplegia in unstable coronary revascularisation patients. A randomised clinical trial. Acta Anaesthesiol Scand. 2000;44:727-732.

Vinten-Johansen J, Zhao ZQ, Corvera JS. Adenosine in myocardial protection in on-pump and off-pump cardiac surgery. Ann Thorac Surg. 2003;75:691-699.

Bigelow WG, Callaghan JC, Hopps JA - General hypothermia for experimental intracardiac surgery; the use of electrophrenic respirations, an artificial. frequency rewarming in general hypothermia. Ann Surg. 1950;132:531-539.

Niazi SA, Lewis FJ. Effects of carbon dioxide on ventricular fibrillation and heart block during hypothermia in rats and dogs. S Forum. 1955;5:106-109.

Chien GL, Wolff RA, Davis RF. "Normothermic range" temperature affects myocardial infarct size. Cardiovasc Res. 1994;28:1014-1017.

Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation. 1997;96:1641-1646.

Hale SL, Kloner RA. Myocardial temperature in acute myocardial infarction: protection with mild regional hypothermia. Am J Physiol. 1997;273:220-227.

Globus MY, Busto R, Lin B. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem. 1995;65:1250-1256.

Zhang Z, Sobel RA, Cheng D. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Brain Res Mol Brain Res. 2001;95:75-85.

Dae MW, Gao DW, Sessler DI et al - Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac. sized pigs. Am J Physiol Heart Circ Physiol. 2002;282:1584-1591.

Dae MW, Gao DW, Ursell PC. Safety and efficacy of endovascular cooling and rewarming for induction and reversal of hypothermia in human-sized pigs. Stroke. 2003;34:734-738.

Kumar K, Wu X, Evans AT. The effect of hypothermia on induction of heat shock protein (HSP)-72 in ischemic brain. Metab Brain Dis. 1995;10:283-291.

Labow RS, Hendry PJ, Meek E. Temperature affects human cardiac sarcoplasmic reticulum energy-mediated calcium transport. J Mol Cell Cardiol. 1993;25:1161-1170.

Valeri CR, Feingold H, Cassidy G. Hypothermia-induced reversible platelet dysfunction. Ann Surg. 1987;205:175-181.

Valeri CR, MacGregor H, Cassidy G. Effects of temperature on bleeding time and clotting time in normal male and female volunteers. Crit Care Med. 1995;23:698-704.

Shiozaki T, Hayakata T, Taneda M. A multicenter prospective randomized controlled trial of the efficacy of mild hypothermia for severely head injured patients with low intracranial pressure. Mild Hypothermia Study Group in Japan. J Neurosurg. 2001;94:50-54.

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-1136.

Reimer KA, Murry CE, Yamasawa I. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986;251:1306-1315.

Rubino A, Yellon DM. Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart?. Trends Pharmacol Sci. 2000;21:225-230.

Okubo S, Xi L, Bernardo NL. Myocardial preconditioning: basic concepts and potential mechanisms. Mol Cell Biochem. 1999;196:3-12.

Bernardo NL, D’Angelo M, Okubo S. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol. 1999;276:1323-1330.

Xuan YT, Tang XL, Banerjee S. Nuclear factor-kappa B plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res. 1999;84:1095-1109.

Schultz JJ, Hsu AK, Gross GJ. Ischemic preconditioning and morphine-induced cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol Cell Cardiol. 1997;29:2187-2195.

Schultz JJ, Hsu AK, Gross GJ. Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol. 1997;29:1355-1362.

Carr CS, Hill RJ, Masamune H. Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc Res. 1997;36:52-59.

Cleveland JC Jr, Meldrum DR, Rowland RT. Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol. 1997;29:175-182.

Ghosh S, Galinanes M. Protection of the human heart with ischemic preconditioning during cardiac surgery: role of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2003;126:133-142.

Bland JH, Lowenstein E. Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology. 1976;45:287-293.

Davis RF, DeBoer LW, Rude RE. The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology. 1983;59:402-411.

Warltier DC, al-Wathiqui MH, Kampine JP. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology. 1988;69:552-565.

Boutros A, Wang J, Capuano C. Isoflurane and halothane increase adenosine triphosphate preservation, but do not provide additive recovery of function after ischemia, in preconditioned rat hearts. Anesthesiology. 1997;86:109-117.

Mattheussen M, Rusy BF, Van Aken. Recovery of function and adenosine triphosphate metabolism following myocardial ischemia induced in the presence of volatile anesthetics. Anesth Analg. 1993;76:69-75.

Lochner A, Harper IS, Salie R. Halothane protects the isolated rat myocardium against excessive total intracellular calcium and structural damage during ischemia and reperfusion. Anesth Analg. 1994;79:226-233.

Preckel B, Thamer V, Schalack W. Beneficial effects of sevoflurane and desflurane against myocardial reperfusion injury after cardioplegic arrest. Can J Anaesth. 1999;40:1076-1081.

Freedman BM, Hamm DP, Everson CT. Enflurane enhances postischemic functional recovery in the isolated rat heart. Anesthesiology. 1985;62:29-33.

Coetzee A. Comparison of the effects of propofol and halothane on acute myocardial ischaemia and myocardial reperfusion injury. S Afr Med J. 1996;86:(Suppl2):85-90.

Ikemoto Y, Yatani A, Arimura H. Reduction of the slow inward current of isolated rat ventricular cells by thiamylal and halothane. Acta Anaesthesiol Scand. 1985;29:583-586.

Terrar DA, Victory JG. Isoflurane depresses membrane currents associated with contraction in myocytes isolated from guinea-pig ventricle. Anesthesiology. 1988;69:742-749.

Terrar DA, Victory JG. Influence of halothane on electrical coupling in cell pairs isolated from guinea-pig ventricle. Br J Pharmacol. 1988;94:509-514.

Bosnjak ZJ, Supan FD, Rusch NJ. The effects of halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular cells. Anesthesiology. 1991;74:340-345.

Eskinder H, Rusch NJ, Supan FD. The effects of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac Purkinje cells. Anesthesiology. 1991;74:919-926.

Connelly TJ, Coronado R. Activation of the Ca2+ release channel of cardiac sarcoplasmic reticulum by volatile anesthetics. Anesthesiology. 1994;81:459-469.

Cavero I, Djellas Y, Guillon JM. Ischemic myocardial cell protection conferred by the opening of ATP-sensitive potassium channels. Cardiovasc Drugs Ther. 1995;9:(Suppl2):245-255.

Nakayama M, Fujita S, Kanaya N. Blockade of ATP-sensitive K+ channel abolishes the anti-ischemic effects of isoflurane in dog hearts. Acta Anaesthesiol Scand. 1997;41:531-535.

Kersten JR, Lowe D, Hettrick DA. Glyburide, a KATP channel antagonist, attenuates the cardioprotective effects of isoflurane in stunned myocardium. Anesth Analg. 1996;83:27-33.

Kato R, Foex P. Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists. Can J Anaesth. 2002;49:777-791.

Preckel B, Schlack W, Comfere T. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth. 1998;81:905-912.

Preckel B, Schlack W, Thamer V. Enflurane and isoflurane, but not halothane, protect against myocardial reperfusion injury after cardioplegic arrest with HTK solution in the isolated rat heart. Anesth Analg. 1998;87:1221-1227.

Conradie S, Coetzee A, Coetzee J. Anesthetic modulation of myocardial ischemia and reperfusion injury in pigs: comparison between halothane and sevoflurane. Can J Anaesth. 1999;46:71-81.

Roscoe AK, Christensen JD, Lynch C 3rd - Isoflurane, but not halothane, induces protection. sensitive potassium channels. Anesthesiology. 2000;92:1692-1701.

Mayfield KP, D’Alecy LG. Role of endogenous opioid peptides in the acute adaptation to hypoxia. Brain Res. 1992;582:226-231.

Mayfield KP, D’Alecy LG. Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther. 1994;268:683-688.

Chien S, Oeltgen PR, Diana JN. Extension of tissue survival time in multiorgan block preparation with a delta opioid DADLE ( [D-Ala2, D- Leu5 ]-enkephalin).. J Thorac Cardiovasc Surg. 1994;107:964-967.

Schultz JE, Hsu AK, Gross GJ. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res. 1996;78:1100-1104.

Takasaki Y, Wolff RA, Chien GL. Met5-enkephalin protects isolated adult rabbit cardiomyocytes via delta-opioid receptors. Am J Physiol. 1999;277:2442-2450.

Miki T, Cohen MV, Downey JM. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Mol Cell Biochem. 1998;186:3-12.

Liang BT, Gross GJ. Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circ Res. 1999;84:1396-1400.

Kato R, Ross S, Foex P. Fentanyl protects the heart against ischaemic injury via opioid receptors, adenosine A1 receptors and KATP channel linked mechanisms in rats. Br J Anaesth. 2000;84:204-214.

Bell SP, Sack MN, Patel A. Delta opioid receptor stimulation mimics ischemic preconditioning in human heart muscle. J Am Coll Cardiol. 2000;36:2296-2302.

Schultz JE, Rose E, Yao Z. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol. 1995;268:2157-2161.

Chien GL, Van Winkle. Naloxone blockade of myocardial ischemic preconditioning is stereoselective. J Mol Cell Cardiol. 1996;28:1895-1900.

Chien GL, Mohtadi K, Wolff RA. Naloxone blockade of myocardial ischemic preconditioning does not require central nervous system participation. Basic Res Cardiol. 1999;94:136-143.

Huh J, Gross GJ, Nagase H. Protection of cardiac myocytes via delta(1)-opioid receptors, protein kinase C, and mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280:H377-H383.

Schultz Je-J, Hsu AK, Nagase H et al - TAN-67, a delta. opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol. 1998;274:H909-H914.

Kato R, Foex P. Fentanyl reduces infarction but not stunning via delta-opioid receptors and protein kinase C in rats. Br J Anaesth. 2000;84:608-614.

Javadov SA, Lim KH, Kerr PM. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res. 2000;45:360-369.

Ko SH, Yu CW, Lee SK. Propofol attenuates ischemia-reperfusion injury in the isolated rat heart. Anesth Analg. 1997;85:719-724.

Kokita N, Hara A, Abiko Y. Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts. Anesth Analg. 1998;86:252-258.

Yoo KY, Yang SY, Lee J. Intracoronary propofol attenuates myocardial but not coronary endothelial dysfunction after brief ischaemia and reperfusion in dogs. Br J Anaesth. 1999;82:90-96.

Murphy PG, Myers DS, Davies MJ. The antioxidant potential of propofol (2,6-diisopropylphenol). Br J Anaesth. 1992;68:613-618.

Nakae Y, Fujita S, Namiki A. Propofol inhibits Ca(2+) transients but not contraction in intact beating guinea pig hearts. Anesth Analg. 2000;90:1286-1292.

Galley HF, Dubbels AM, Webster NR. The effect of midazolam and propofol on interleukin-8 from human polymorphonuclear leukocytes. Anesth Analg. 1998;86:1289-1293.

Mathur S, Farhangkhgoee P, Karmazyn M. Cardioprotective effects of propofol and sevoflurane in ischemic and reperfused rat hearts: role of K(ATP) channels and interaction with the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Anesthesiology. 1999;91:1349-1360.

De Hert SG, ten Broecke PW, Mertens E. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 2002;97:42-49.

Hartlage MA, Berendes E, Van Aken. Xenon improves recovery from myocardial stunning in chronically instrumented dogs. Anesth Analg. 2004;99:655-664.

Mullenheim J, Rulands R, Wietschorke T. Late preconditioning is blocked by racemic ketamine, but not by S(+)- ketamine. Anesth Analg. 2001;93:265-270.

Mullenheim J, Frassdorf J, Preckel B et al - Ketamine, but not. ketamine, blocks ischemic preconditioning in rabbit hearts in vivo. Anesthesiology. 2001;94:630-636.

Kudoh A, Matsuki A. Ketamine inhibits inositol 1,4,5-trisphosphate production depending on the extracellular Ca2+ concentration in neonatal rat cardiomyocytes. Anesth Analg. 1999;89:1417-1422.

Ko SH, Lee SK, Han YJ. Blockade of myocardial ATP-sensitive potassium channels by ketamine. Anesthesiology. 1997;87:68-74.

Tsutsumi Y, Oshita S, Kitahata H. Blockade of adenosine triphosphate-sensitive potassium channels by thiamylal in rat ventricular myocytes. Anesthesiology. 2000;92:1154-1159.

Khandoudi N, Percevault-Albadine J, Bril A. Comparative effects of carvedilol and metoprolol on cardiac ischemia- reperfusion injury. J Cardiovasc Pharmacol. 1998;32:443-451.

Hoar PF, Stone JG, Faltas AN. Hemodynamic and adrenergic responses to anesthesia and operation for myocardial revascularization. J Thorac Cardiovasc Surg. 1980;80:242-248.

Slogoff S, Keats AS. Does perioperative myocardial ischemia lead to postoperative myocardial infarction?. Anesthesiology. 1985;62:107-114.

Piriou V, Aouifi A, Lehot JJ. Perioperative beta-blockers: Part two: therapeutic indications. Can J Anaesth. 2000;47:664-672.

Viljoen JF, Estafanous FG, Kellner GA. Propranolol and cardiac surgery. J Thorac Cardiovasc Surg. 1972;64:826-830.

Faulkner SL, Hopkins JT, Boerth RC. Time required for complete recovery from chronic propranolol therapy. N Engl J Med. 1973;289:607-609.

Fontaine B, Bertrandias E, Tournay D. Anesthesia for aorto-coronary bypass. Ann Anesthesiol Fr. 1979;20:411-419.

Ponten J, Haggendal J, Milocco I. Long-term metoprolol therapy and neuroleptanesthesia in coronary artery surgery: withdrawal versus maintenance of beta 1-adrenoreceptor blockade. Anesth Analg. 1983;62:380-390.

Chung F, Houston PL, Cheng DC. Calcium channel blockade does not offer adequate protection from perioperative myocardial ischemia. Anesthesiology. 1988;69:343-347.

du Cailar C, Maille JG, Jones W. MB creatine kinase and the evaluation of myocardial injury following aortocoronary bypass operation. Ann Thorac Surg. 1980;29:8-14.

Rao PS, Brock FE, Cleary K. Effect of intraoperative propranolol on serum creatinine kinase MB release in patients having elective cardiac operations. J Thorac Cardiovasc Surg. 1984;88:562-566.

Pfisterer ME, Kloter-Weber UC, Huber M. Prevention of supraventricular tachyarrhythmias after open heart operation by low-dose sotalol: a prospective, double-blind, randomized, placebo-controlled study. Ann Thorac Surg. 1997;64:1113-1119.

Podesser BK, Schwarzacher S, Zwoelfer W. Comparison of perioperative myocardial protection with nifedipine versus nifedipine and metoprolol in patients undergoing elective coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1995;110:1461-1469.

Slogoff S, Keats AS. Does chronic treatment with calcium entry blocking drugs reduce perioperative myocardial ischemia?. Anesthesiology. 1988;68:676-680.

Kyosola K, Mattila T, Harjula A. Life-threatening complications of cardiac operations and occurrence of myocardial catecholamine bombs. J Thorac Cardiovasc Surg. 1988;95:334-339.

Ferguson TB Jr, Coombs LP, Peterson ED. Preoperative beta-blocker use and mortality and morbidity following CABG surgery in North America. JAMA. 2002;287:2221-2227.

Mehlhorn U, Sauer H, Kuhn-Regnier F. Myocardial beta-blockade as an alternative to cardioplegic arrest during coronary artery surgery. Cardiovasc Surg. 1999;7:549-557.

Wallace AW, Galindez D, Salahieh A. Effect of clonidine on cardiovascular morbidity and mortality after noncardiac surgery. Anesthesiology. 2004;101:284-293.

Loick HM, Schmidt C, Van Aken. High thoracic epidural anesthesia, but not clonidine, attenuates the perioperative stress response via sympatholysis and reduces the release of troponin T in patients undergoing coronary artery bypass grafting. Anesth Analg. 1999;88:701-709.

Rao V, Merante F, Weisel RD. Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyo- cytes from simulated ischemia. J Thorac Cardiovasc Surg. 1998;116:485-494.

LaDisa JF Jr, Krolikowski JG, Pagel PS. Cardioprotection by glucose-insulin-potassium: dependence on KATP channel opening and blood glucose concentration before ischemia. Am J Physiol Heart Circ Physiol. 2004;287:601-607.

Lell WA, Nielsen VG, McGiffin DC. Glucose-insulin-potassium infusion for myocardial protection during off-pump coronary artery surgery. Ann Thorac Surg. 2002;73:1246-1251.

Zhang HF, Fan Q, Qian XX. Role of insulin in the anti-apoptotic effect of glucose-insulin-potassium in rabbits with acute myocardial ischemia and reperfusion. Apoptosis. 2004;9:777-783.

Bruemmer-Smith S, Avidan MS, Harris B. Glucose, insulin and potassium for heart protection during cardiac surgery. Br J Anaesth. 2002;88:489-495.

Gu W, Pagel PS, Warltier DC. Modifying cardiovascular risk in diabetes mellitus. Anesthesiology. 2003;98:774-779.

Belhomme D, Peynet J, Florens E. Is adenosine preconditioning truly cardioprotective in coronary artery bypass surgery?. Ann Thorac Surg. 2000;70:590-594.

Kirno K, Friberg P, Grzegorczyk A. Thoracic epidural anesthesia during coronary artery bypass surgery: effects on cardiac sympathetic activity, myocardial blood flow and metabolism, and central hemodynamics. Anesth Analg. 1994;79:1075-1081.

Gramling-Babb PM, Zile MR, Reeves ST. Preliminary report on high thoracic epidural analgesia: relationship between its therapeutic effects and myocardial blood flow as assessed by stress thallium distribution. J Cardiothorac Vasc Anesth. 2000;14:657-661.

Chaney MA. Benefits of neuraxial anesthesia in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1997;11:808-809.

Grass JA. The role of epidural anesthesia and analgesia in postoperative outcome. Anesthesiol Clin North America. 2000;18:407-428.

Scott NB, Turfrey DJ, Ray DA. A prospective randomized study of the potential benefits of thoracic epidural anesthesia and analgesia in patients undergoing coronary artery bypass grafting. Anesth Analg. 2001;93:528-535.

Liu SS, Block BM, Wu CL. Effects of perioperative central neuraxial analgesia on outcome after coronary artery bypass surgery: a meta-analysis. Anesthesiology. 2004;101:153-161.

5dd6d8f90e8825f50e13f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections