Avaliação da correlação entre o dióxido de carbono expirado e o débito cardíaco em pacientes submetidos à cirurgia cardíaca com circulação extracorpórea
Correlation between end-tidal carbon dioxide levels and cardiac output during cardiac surgery with cardiopulmonary bypass
Karina Takesaki Miyaji; Roberto Iara Buscati; Antônio José Arraiz Rodriguez; Luciano Brandão Machado; Luiz Marcelo Sá Malbouisson; Maria José Carvalho Carmona
Resumo
Palavras-chave
Abstract
Keywords
References
MC Hardy GJ. The relationship between the differences in pressure and content of carbon. Clin Sci. 1967;32:299-309.
Teboul JL, Mercat A, Lenique F. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007-1010.
Osterlund A, Gideon P, Krill G. A new method of using gas exchange measurements for the non-invasive determination of cardiac output: clinical experiences in adults following cardiac surgery. Acta Anaesthesiol Scand. 1995;39:727-732.
Arnold JH, Stenz RI, Thompson JE. Noninvasive determination of cardiac output using single breath CO2 analysis. Crit Care Med. 1996;24:1701-1705.
Arnold JH, Thompson JE, Arnold LW. Single breath CO2 analysis: description and validation of a method. Crit Care Med. 1996;24:96-102.
Higgins TL, Estafanous FG, Loop FD. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients: A clinical severity score. JAMA. 1992;267:2344-2348.
Crespo A, Carvalho AF. Capnografia. Monitorização Respiratória em UTI. 1998:283-298.
Opper SE, Fibuch EE, Nelson RE. Effect of oxygenator type and bypass flow pattern on the P(a-ET)CO2 gradient. J Cardiothorac Vasc Anesth. 1992;6:46-50.
Myles PS, Story DA, Higgs MA. Continuous measurement of arterial and end-tidal carbon dioxide during cardiac surgery: Pa-ET CO2 gradient. Anaesth Intensive Care. 1997;25:459-463.
Zia M, Davies FW, Alston RP. Oxygenator exhaust capnography: a method of estimating arterial carbon dioxide tension during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1992;6:42-45.
Callaham M, Barton C. Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med. 1990;18:358-362.
Garnett AR, Ornato JP, Gonzalez ER. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA. 1987;257:512-515.
Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607-611.
Sanders AB, Kern KB, Otto CW. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation: A prognostic indicator for survival. JAMA. 1989;262:1347-1351.
Asplin BR, White RD. Out-of-hospital quantitative monitoring of end-tidal carbon dioxide pressure during CPR. Ann Emerg Med. 1994;23:25-30.
Maslow A, Stearns G, Bert A. Monitoring end-tidal carbon dioxide during weaning from cardiopulmonary bypass in patients without significant lung disease. Anesth Analg. 2001;92:306-313.
Isserles AS, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output?. Anesth Analg. 1991;73:808-814.
Feng WC, Singh AK. Intraoperative use of end-tidal carbon dioxide tension to assess cardiac output. J Thorac Cardiovasc Surg. 1994;108:991-992.
Hachenberg T, Tenling A, Nystrom SO. Ventilation-perfusion inequality in patients undergoing cardiac surgery. Anesthesiology. 1994;80:509-519.
Chiara O, Giomarelli PP, Biagioli B. Hypermetabolic response after hypothermic cardiopulmonary bypass. Crit Care Med. 1987;15:995-1000.
Wahba RW, Tessler MJ. Misleading end-tidal CO2 tensions. Can J Anaesth. 1996;43:862-866.
Auler Jr JOC, Távora JCF, Miyaji KT. Avaliação não invasiva do débito cardíaco no pós-operatório de cirurgia cardíaca. Rev Bras Anestesiol. 1999;49(^s96).