Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1590/S0034-70942003000400013
Brazilian Journal of Anesthesiology
Artigo de Revisão

Xenônio: farmacologia e uso clínico

Xenon: pharmacology and clinical use

Florentino Fernandes Mendes; Marcos Emanuel Wortmann Gomes

Downloads: 1
Views: 1348

Resumo

JUSTIFICATIVA E OBJETIVOS: O Xenônio é um gás incolor, inodoro, inerte, não irritante, não poluente, não explosivo, estável, com baixo coeficiente de solubilidade e com propriedades anestésicas. O objetivo desta revisão é mostrar alguns aspectos farmacológicos e o emprego clínico do xenônio em anestesia. CONTEÚDO: O xenônio é um gás extremamente raro. Possui CAM de 0,63 a 0,71, CAM-acordado de 0,32 ± 5% e coeficiente de solubilidade sangue-gás de 0,14, resultando em indução anestésica rápida, agradável e bem tolerada, assim como recuperação 2 a 3 vezes mais rápida do que outros agentes. Possui efeitos analgésicos benéficos e mínimos efeitos cardiovasculares. Pode aumentar a resistência pulmonar e ocasionar o efeito do 2º gás, porém menos importante do que o N2O. Determina um aumento do fluxo cerebral, pressão intracraniana e pressão de perfusão cerebral. O xenônio pode prevenir a estimulação da medula supra-renal. CONCLUSÕES: As propriedades anestésicas do xenônio lhe conferem vantagens consideráveis em relação a outros agentes inalatórios para a utilização em anestesia. Entretanto, seu alto custo de produção torna-o proibitivo em relação às outras técnicas existentes. Estudos estão sendo realizados a fim de desenvolver um método mais econômico para utilização deste agente.

Palavras-chave

ANESTÉSICOS, ANESTÉSICOS

Abstract

BACKGROUND AND OBJECTIVES: Xenon is a colorless, odorless, inert, non-irritating, non-pollutant, non-explosive, stable gas with low solubility coefficient and anesthetic properties. This review aimed at describing some pharmacological aspects and the clinical use of xenon in anesthesia. CONTENTS: Xenon is an extremely rare gas with MAC of 0.63 to 0.71, MAC-awaken of 0.32 ± 5% and solubility coefficient of 0.14, providing fast, pleasant and well tolerated anesthetic induction, as well as 2 to 3 times faster recovery as compared to other agents. It has beneficial analgesic and minimal cardiovascular effects. Xenon may increase pulmonary resistance and produce the second gas effect, although not as important as N2O. It increases brain flow, intra-cranial pressure and cerebral perfusion pressure. Xenon is able to prevent adrenal gland stimulation. CONCLUSIONS: Xenon anesthetic properties grant it considerable advantages over other inhalational agents used in anesthesia. However, its high production costs make it prohibitive as compared to other existing techniques. New studies are being conducted with the aim of developing a more cost-effective method for using this gas.

Keywords

ANESTHETICS, ANESTHETICS

Referências

Talat A. Xenon anesthesia. Int Anesthesiol Clin. 2001;39:1-14.

Lawrence JH, Loomis WF, Tobias CA. Preliminary observations on the narcotic effect of xenon with a review values for solubility’s of gases in water and oils. J Physiol. 1946;105:197-204.

Cullen SC, Gross EG. The anesthetic properties of xenon in animals and humans beings, with additional observations on krypton. Science. 1951;113:580-582.

Eger EI, Brandstater B, Saidman LJ. Equipotent alveolar concentrations of methoxyflurane, halothane, diethyl ether fluroxene, cyclopropane, xenon and nitrous oxide in the dog. Anesthesiology. 1965;26:771-777.

Gwinn RP, Norton PB, McHenry R. The New Encyclopedia Britannica. 1992;12:796-797.

Lynch C, Baum J, Tenbrinck R. Xenon anesthesia. Anesthesiology. 2000;92:865-870.

Nakata Y, Goto T, Ishiguro Y. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology. 2001;94:611-614.

Nakata Y, Goto T, Morita S. Clinical pharmacology of xenon. Int Anesthesiol Clin. 2001;39:63-75.

Goto T, Nakata Y, Morita S. How does xenon produce anesthesia?: A perspective from electrophysiological studies. Int Anesthesiol Clin. 2001;39:85-94.

Goto T, Nakata Y, Ishiguro Y. Minimum alveolar concentration-awake of xenon alone and in combination with isoflurane or sevoflurane. Anesthesiology. 2000;93:1188-1193.

Whitehurst SL, Nemoto EM. MAC of xenon and halothane in rhesus monkeys. J Neurosurg Anesthesiol. 1994;6:275-279.

Steward A, Allott PR, Cowles AL. Solubility coefficients for inhaled anesthetics for water, oil and biological media. Br J Anesth. 1973;45:282-293.

Goto T, Suwa K, Uezono S. The blood/gas partition coefficient of xenon may lower than generally accepted. Br J Anesth. 1998;80:255-256.

Nakata Y, Goto T, Ichinose F et al. Comparison of inhalational induction’s with xenon and sevoflurane. Anesthesiology. 1997;87(^s3A):314.

Nakata Y, Goto T, Morita S. Comparison of inhalation induction’s with xenon and sevoflurane. Acta Anaesthesiol Scand. 1997;41:1157-1161.

Goto T, Saito H, Ichinose F. Emergence times from xenon anesthesia are independent of the duration of anesthesia. Br J Anesth. 1997;79:595-599.

Burov NE, Dzhabarov DA, Ostapchenko DA. clinical stages and subjective sensations in xenon anesthesia. Anestesiol Reanimatol. 1993;1:7-11.

Tenbrick R, Hahn MR, Gültona I. The first clinical experiences with xenon. Int Anesthesiol Clin. 2001;39:29-42.

Reinelt H, Schirmer U, Marx T. Diffusion of xenon and nitrous oxide into the bowel. Anesthesiology. 2001;94:475-477.

Goto T, Saito H, Shinkai M. Xenon provides faster emergence from anesthesia than does nitrous oxide-sevoflurane or nitrous oxide-isoflurane. Anesthesiology. 1997;86:1273-1278.

Hanne P, Marx T, Musati S. Xenon: uptake and costs. Int Anesthesiol Clin. 2001;39:43-61.

Luttropp HH, Thomasson R, Dahm S. Clinical experience with minimal flow anesthesia. Acta Anaesthesiol Scand. 1994;38:121-125.

Yagi M, Mashimo T, Kawaguchi T et al. Analgesic and hypnotic effects of sub anesthetic concentrations of xenon in human volunteers: comparison with nitrous oxide. Br J Anesth. 1995;74:670-673.

Nakata Y, Goto T, Morita S. Effect of xenon on haemodynamic responses to skin incision in humans. Anesthesiology. 1999;90:406-410.

Petersen-Felix S, Luginbühl M, Schinider T. Comparison of the analgesic potency of xenon and nitrous oxide in humans evaluated by experimental pain. Br J Anesth. 1998;81:742-745.

Lachmann B, Armbruster S, Schairer W. Safety end efficacy of xenon in routine use as an inhalation anesthetic. Lancet. 1990;335:1413-1415.

Schraag S, Schreiber MN, Flaschar J et al. Effective concentration 50 for propofol with 70% xenon vs 70% nitrous oxide. Br J Anesth. 1998;80(^sSuppl):A470.

Luttropp H-H, Romner B, Perhag L et al. Left ventricular performance and cerebral haemodynamics during xenon anesthesia. Anesthesia. 1993;48:1045-1049.

Yoshiki I. Cardiovascular effects of xenon. Int Anesthesiol Clin. 2001;39:77-84.

Yoshitaka F. Respiratory effects of xenon. Int Anesthesiol Clin. 2001;39:95-103.

Giller CA, Purdy P, Lindstrom WW. Effects of inhaled stable xenon on cerebral blood flow velocity. AJNR. 1990;11:177-182.

Plougmann J, Astrup J, Peterson J. Effect of stable xenon inhalational on intracranial pressure during measurement of cerebral blood flow in head injury. J Neurosurg. 1994;81:822-828.

Goto T, Nakata Y, Saito H. The mid latency auditory evoked potentials predict responsiveness to verbal commands in patients emerging from anesthesia with xenon, isoflurane, and sevoflurane but not with nitrous oxide. Survey of Anesthesiology. 2002;46:52-53.

Goto T, Nakata Y, Saito H. Bispectral analysis of the electroencephalogram does not predict responsiveness to verbal command in patients emerging from xenon anaesthesia. Br J Anaesth. 2000;85:359-363.

Reinelt H, Marx T, Schirmer U et al. Diffusion of xenon and nitrous oxide into the bowel during mechanical ileus. Anesthesiology. 2002;96:512-513.

Boomsma F, Rupreht J, Manin`t Veld AJ. Haemodynamic and neurohumoral effects of xenon anesthesia. Anesthesia. 1990;45:273-278.

de Rossi L, Horn N, Baumert JH. Xenon does not affect human platelet function in vitro. Anesth Analg. 2001:635-640.

Foreda G, Pazhur RJ, Baur C. Xenon does not trigger MH in MH-susceptible pigs. Br J Anesth. 1998;80(^sSuppl):A306.

Lorens M, Holl K, Nemati N. Effects of 33% stable xenon/O2 mixture on somatosensory evoked potentials. Neurol Res. 1991;13:133-135.

Saito H., Saito M, Goto T. Priming of anesthesia circuit with xenon for closed circuit anesthesia. Artif Organs. 1997;21:70-72.

Eger EI. New inhaled anesthetics. Anesthesiology. 1994;80:906-922.

Dingley J, Findlay GP, Foëx BA. A closed xenon anesthesia delivery system. Anesthesiology. 2001;94:173-176.

5ddd34770e8825c97f1da3e9 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections