Efficacy of magnesium sulfate as an adjuvant to local anesthetics in supraclavicular brachial plexus block: a meta-analysis of randomized trials
Eficácia do sulfato de magnésio como adjuvante a anestésicos locais no bloqueio do plexo braquial supraclavicular: uma metanálise de ensaios randomizados
Willyam Barros Saraiva, Isadora Eloy Candido, Roberta Ribeiro Brandão Caldas, Fabiano Timbó Barbosa
Abstract
Background
Magnesium Sulfate (MS) maintains physiological functions in the body. Studies suggest its safety in regional anesthesia, despite off-label perineural use. We conducted a systematic review and meta-analysis to evaluate MS efficacy as an adjuvant in supraclavicular brachial plexus block.
Methods
The study was registered in PROSPERO (CRD42025641627) on 01/21/2025. We searched PubMed, Embase, Cochrane, clinicaltrials.gov and gray literature for eligible studies.
We included RCTs that: enrolled adult patients; involved orthopedic surgery with supraclavicular block; compared LA alone versus LA with MS; and reported primary outcomes. Primary outcomes were duration of sensory and motor block, while secondary outcomes included onset of sensory and motor block, PONV and rescue analgesia needs postoperatively. RoB2 tool and GRADE assessed bias risk and evidence certainty. Variables were examined using DerSimonian-Laird random-effects model.
Results
Analysis included 10 studies and 734 patients. The intervention group showed longer sensory and motor block than controls. The Mean Difference (MD) was 180.84 minutes (95% CI [154.09, 207.59], 95% PI [71.67, 289.77], p < 0.00001, I2 = 97%) and 151.26 minutes (95% CI [99.78, 202.74], 95% PI [-23.12, 325.63], p < 0.00001, I2 = 99%). The magnesium group showed statistical difference in onset of sensory and motor blockade and rescue analgesia needs, with no difference in PONV. Evidence certainty was rated low to moderate. Risk of bias “high” in three studies, “some concerns” in four studies and “low” in three studies.
Conclusion
Our meta-analysis supports MS as adjuvant in supraclavicular block. Further research is needed due to high heterogeneity.
PROSPERO registration: CRD42025641627.
Keywords
Resumo
Introdução
O Sulfato de Magnésio (MS) mantém funções fisiológicas no organismo. Estudos sugerem sua segurança em anestesia regional, apesar do uso perineural off-label. Realizamos uma revisão sistemática e metanálise para avaliar a eficácia do MS como adjuvante no bloqueio supraclavicular do plexo braquial.
Métodos
O estudo foi registrado no PROSPERO (CRD42025641627) em 21/01/2025. Pesquisamos PubMed, Embase, Cochrane, clinicaltrials.gov e literatura cinzenta para estudos elegíveis. Incluímos RCTs que: recrutaram pacientes adultos; envolveram cirurgia ortopédica com bloqueio supraclavicular; compararam LA isolado versus LA com MS; e relataram desfechos primários. Os desfechos primários foram duração do bloqueio sensorial e motor, enquanto os secundários incluíram início do bloqueio sensorial e motor, PONV e necessidade de analgesia de resgate no pós-operatório. A ferramenta RoB2 e o GRADE avaliaram risco de viés e certeza da evidência. As variáveis foram examinadas usando o modelo de efeitos aleatórios de DerSimonian-Laird.
Resultados
A análise incluiu 10 estudos e 734 pacientes. O grupo de intervenção apresentou maior duração do bloqueio sensorial e motor em comparação aos controles. A Diferença Média (MD) foi de 180,84 minutos (CI 95% [154,09, 207,59], PI 95% [71,67, 289,77], p < 0,00001, I² = 97%) e 151,26 minutos (CI 95% [99,78, 202,74], PI 95% [−23,12, 325,63], p < 0,00001, I² = 99%). O grupo do magnésio apresentou diferença estatística no início do bloqueio sensorial e motor e na necessidade de analgesia de resgate, sem diferença em PONV. A certeza da evidência foi classificada como baixa a moderada. O risco de viés foi “alto” em três estudos, “algumas preocupações” em quatro estudos e “baixo” em três estudos.
Conclusion
Nossa metanálise reforça o MS como adjuvante no bloqueio supraclavicular. Mais pesquisas são necessárias devido à alta heterogeneidade.
Registro PROSPERO: CRD42025641627.
Palavras-chave
References
1. D’Souza RS, Johnson RL. Supraclavicular Block Jul 25]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. 2025 Jan. Available from https://www.ncbi.nlm.nih.gov/ books/NBK519056/.
2. Desai N, Albrecht E, El-Boghdadly K. Perineural adjuncts for peripheral nerve block. BJA Educ. 2019;19:276−82.
3. Krishna Prasad GV, Khanna S, Jaishree SV. Review of adjuvants to local anesthetics in peripheral nerve blocks: Current and future trends. Saudi J Anaesth. 2020;14:77−84.
4. Pascual-Ramírez J, Gil-Trujillo S, Alcantarilla C. Intrathecal magnesium as analgesic adjuvant for spinal anesthesia: a metaanalysis of randomized trials. Minerva Anestesiol. 2013;79:667 −78.
5. Ammar AS, Mahmoud KM, Kasemy ZA. Comparison between adenosine and magnesium sulphate as adjuvants for transversus abdominis plane block: a prospective randomized controlled trial. Minerva Anestesiol. 2018;84(3):304−10.
6. Li M, Jin S, Zhao X, et al. Does MS as an Adjuvant of Local Anesthetics Facilitate Better Effect of Perineural Nerve Blocks?: A Meta-analysis of Randomized Controlled Trials. Clin J Pain. 2016;32:1053−61.
7. Schubert A-K, Seneviratne V, Stolz J, et al. The effect of adjuvants added to local anaesthetics for single-injection upper extremity peripheral regional anaesthesia: A systematic review with network meta-analysis of randomised trials. Eur J Anaesthesiol. 2023;40:672−90.
8. Zeng J, Chen Q, Yu C, Zhou J, Yang B. The Use of Magnesium Sulfate and Peripheral Nerve Blocks: An Updated Meta-analysis and Systematic Review. Clin J Pain. 2021;37:629−37.
9. Bruce BG, Green A, Blaine TA, Wesner LV. Brachial plexus blocks for upper extremity orthopaedic surgery. J Am Acad Orthop Surg. 2012;20:38−47.
10. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
11. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10(10):ED000142.
12. Barrington MJ, D’Souza RS, Mascha EJ, Narouze S, Kelley GA. Systematic reviews and meta-analyses in regional anesthesia and pain medicine (Part I): guidelines for preparing the review protocol. Reg Anesth Pain Med. 2024;49:391−402.
13. D’Souza RS, Barrington MJ, Sen A, Mascha EJ, Kelley GA. Systematic reviews and meta-analyses in regional anesthesia and pain medicine (Part II): guidelines for performing the systematic review. Reg Anesth Pain Med. 2024;49:403−22.
14. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
15. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490.
16. GRADEproGDT. GRADEpro Guideline Development Tool [Software]. McMaster University and Evidence Prime; 2025. Accessed January https://gradepro.org.
17. Review Manager (RevMan). The Cochrane Collaboration. https://revman.cochrane.org; 2025.
18. R Core Team. R: A language and environment for statistical computing [Internet]. The Journal of open-source software. R foundation for statistical computing; 2021. Available from https://www.R-project.org/.
19. Champely SPWR. Basic Functions for Power Analysis (R Package Version 1.3-0). The Comprehensive R Archive Network. 2020. Avaliable from https://CRAN.R-project.org/package=pwr.
20. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 2010;36:1−48.
21. Graham PL, Moran JL. Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries. J Clin Epidemiol. 2012;65(5):503−10. https://doi.org/ 10.1016/j.jclinepi.2011.09.012.
22. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177−88.
23. Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ. 1997;315:629−34.
24. Aggarwal S, Singh NK, Agrawal P, Sharma V. A randomized control study to evaluate efficacy of magnesium sulphate as an additive to ropivacaine in supraclavicular brachial plexus block. Euro J Mol Clin Med. 2022;9:2184−91.
25. Borgohain D, Dey A. Efficacy of Magnesium Sulphate as Adjuvant to Bupivacaine 0.5% for Supraclavicular Brachial Plexus Block in Patients undergoing Upper Limb Surgery. Euro J Cardiovasc Med. 2023;13:842−9.
26. Gupta M. Comparative evaluation of fentanyl and magnesium sulphate as an adjuvant to 0.375% bupivacaine in ultrasound guided supraclavicular brachial plexus block. Indian J Clin Anaesth. 2022;9:297−303.
27. Jalili S, Kavandi D, Gheiasi SF. Comparison of the Effect of Adding MS and Low-Dose Dexamethasone to Ropivacaine for Supraclavicular Brachial Plexus (Trunks) Nerve Block in Elective Upper Limb Surgeries: A Prospective Triple-Blind Randomized Clinical Trial. J Adv Med Biomed Res. 2024;32:67−78.
28. Kaur S, Dhawan J, Gupta R, Chawla S. Comparison of MS and Ketamine with Ropivacaine in Supraclavicular Brachial Plexus Block: A Randomized Controlled Trial. Anesth Essays Res. 2020;14:143−8.
29. Mukherjee K, Das A, Basunia SR, Dutta S, Mandal P, Mukherjee A. Evaluation of Magnesium as an adjuvant in Ropivacaineinduced supraclavicular brachial plexus block: A prospective, double-blinded randomized controlled study. J Res Pharm Pract. 2014;3:123−9.
30. Patel AJ, Musa H, Parmar M, Patel N, Modh D, Hadiya K. A Clinical Comparison Between 0.5% Ropivacaine and 0.5% Ropivacaine with Magnasium Sulphate in USG Guided Supraclavicular Brachial Plexus Block for Upper Limb Surgeries. Int J Pharmaceutical Clin Res. 2023;15:906−12.
31. Shukla U, Singh D, Yadav JBS, Azad MS. Dexmedetomidine and MS as Adjuvant to 0.5% Ropivacaine in Supraclavicular Brachial Plexus Block: A Comparative Evaluation. Anesth Essays Res. 2020;14:572−7.
32. Verma V, Rana S, Chaudhary SK, Singh J, Verma RK, Sood S. A dose-finding randomised controlled trial of magnesium sulphate as an adjuvant in ultrasound-guided supraclavicular brachial plexus block. Indian J Anaesth. 2017;61. 250-5.
33. Youssef MZS, Medani MME, Elsheikh MEE, Shalaby EMAG, Agwa A, Elhefni TMR. Comparative assessment of ms and dexmedetomidine as adjuncts to 0.5% ropivacaine in supraclavicular brachial plexus block. J Population Therap Clin Pharmacol. 2024;31:124−9.
34. Lin E, Choi J, Hadzic A. Peripheral nerve blocks for outpatient surgery: evidence-based indications. Curr Opin Anaesthesiol. 2013;26:467−74.
35. Avidan A, Drenger B, Ginosar Y. Peripheral nerve block for ambulatory surgery and postoperative analgesia. Curr Opin Anaesthesiol. 2003;16:567−73.
36. Hadzic A, Karaca PE, Hobeika P, et al. Peripheral nerve blocks result in superior recovery profile compared with general anesthesia in outpatient knee arthroscopy. Anesth Analg. 2005;100:976−81.
37. Peng Q, Yang X, Li J, You Y, Zhao XC. The Effect of the MS in Ultrasound-Guided Quadratus Lumborum Block on Postoperative Analgesia: A Randomized Controlled Trial. Pain Ther. 2023;12:141−50.
38. Lee AR, Yi HW, Chung IS, et al. Magnesium added to bupivacaine prolongs the duration of analgesia after interscalene nerve block. Can J Anaesth. 2012;59. 21-7.
39. Tsaousi G, Nikopoulou A, Pezikoglou I, Birba V, Grosomanidis V. Implementation of magnesium sulphate as an adjunct to multimodal analgesic approach for perioperative pain control in lumbar laminectomy surgery: A randomized placebo-controlled clinical trial. Clin Neurol Neurosurg. 2020;197:106091.
40. Ramegowda S, Gs K, Chandra M, Rajan L, Kumar D, Kumar P. A Comparative Analysis of MS Administered Intravenously Versus Perineurally as an Additive to Ropivacaine in Supraclavicular Brachial Plexus Block Under Ultrasound Guidance: A Randomized Clinical Trial. Cureus. 2024;16:e72944.
41. Kang RA, Chung YH, Ko JS, Yang MK, Choi DH. Reduced Hemidiaphragmatic Paresis With a "Corner Pocket" Technique for Supraclavicular Brachial Plexus Block: Single-Center, ObserverBlinded, Randomized Controlled Trial. Reg Anesth Pain Med. 2018;43. 720-4.
42. Renes SH, Spoormans HH, Gielen MJ, Rettig HC, van Geffen GJ. Hemidiaphragmatic paresis can be avoided in ultrasound-guided supraclavicular brachial plexus block. Reg Anesth Pain Med. 2009;34:595−9.
43. Bao X, Huang J, Feng H, et al. Effect of local anesthetic volume (20 mL vs 30 mL ropivacaine) on electromyography of the diaphragm and pulmonary function after ultrasound-guided supraclavicular brachial plexus block: a randomized controlled trial. Reg Anesth Pain Med. 2019;44:69−75.
44. Mak PH, Irwin MG, Ooi CG, Chow BF. Incidence of diaphragmatic paralysis following supraclavicular brachial plexus block and its effect on pulmonary function. Anaesthesia. 2001;56:352−6.
45. Pham-Dang C, Gunst JP, Gouin F, et al. A novel supraclavicular approach to brachial plexus block. Anesth Analg. 1997;85. 111-6.
46. Neal JM, Moore JM, Kopacz DJ, Liu SS, Kramer DJ, Plorde JJ. Quantitative analysis of respiratory, motor, and sensory function after supraclavicular block. Anesth Analg. 1998;86:1239−44.
47. Neal JM, Moore JM, Kopacz DJ, Liu SS, Kramer DJ, Plorde JJ. Quantitative analysis of respiratory, motor, and sensory function after supraclavicular block. Anesth Analg. 1998;86:1239−44.
48. Koyyalamudi VB, Arulkumar S, Yost BR, Fox CJ, Urman RD, Kaye AD. Supraclavicular and paravertebral blocks: Are we underutilizing these regional techniques in perioperative analgesia? Best Pract Res Clin Anaesthesiol. 2014;28:127−38.
49. Wu J, Chen G, Quan X, et al. Combination of different local anesthetic adjunct for supraclavicular brachial plexus block after arthroscopic shoulder surgery: a prospective randomized controlled trial. BMC Musculoskelet Disord. 2024;25:844.
50. Hung KC, Chang LC, et al. Influence of Intravenous MS Infusion on the Subjective Postoperative Quality of Recovery: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2024;16:2375.
51. Beiranvand S, Karimi A, Haghighat Shoar M, Baghizadeh Baghdashti M. The Effects of MS with Lidocaine for Infraclavicular Brachial Plexus Block for Upper Extremity Surgeries. J Brachial Plex Peripher Nerve Inj. 2020;15:e33−9.
52. Shahtaheri Y, Kamali A, Rad MT, Yazdi B. Comparison of hemodynamic changes of MS and dexmedetomidine for an axillary brachial plexus block. J Family Med Prim Care. 2019;8. 2223-8.
53. Aghamohammadi D, Farzin H, Khanbabayi M, Fooladi S. The effects of intravenous MS on hemodynamic status and pain control in patients after laparotomy surgery: A double blind clinical trial. Anesthesiol Pain. 2018;9:66−73.
54. Cheng C, Reynolds IJ. Subcellular localization of glutamatestimulated intracellular magnesium concentration changes in cultured rat forebrain neurons using confocal microscopy. Neuroscience. 2000;95. 973-9.
55. Saeki H, Matsumoto M, Kaneko S, et al. Is intrathecal MS safe and protective against ischemic spinal cord injury in rabbits? Anesth Analg. 2004;99. 1805-12.
56. Ozdogan L, Sastim H, Ornek D, Postaci A, Ayerden T, Dikmen B. Neurotoxic effects of intrathecal magnesium sulphate. Braz J Anesthesiol. 2013;63:139−43.
57. Albrecht E, Kirkham KR, Liu SS, Brull R. The analgesic efficacy and safety of neuraxial magnesium sulphate: a quantitative review. Anaesthesia. 2013;68:190−202.
58. Emelife PI, Eng MR, Menard BL, et al. Adjunct medications for peripheral and neuraxial anesthesia. Best Pract Res Clin Anaesthesiol. 2018;32:83−99.
59. Kirksey MA, Haskins SC, Cheng J, Liu SS. Local Anesthetic Peripheral Nerve Block Adjuvants for Prolongation of Analgesia: A Systematic Qualitative Review. PLoS One. 2015;10:e0137312.
Submitted date:
02/24/2025
Accepted date:
08/17/2025