Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1016/j.bjane.2024.844501
Brazilian Journal of Anesthesiology
Original Investigation

Apelin-13 reverses bupivacaine-induced cardiotoxicity: an experimental study

A apelina-13 reverte a cardiotoxicidade induzida pela bupivacaína: um estudo experimental

Xixi Cai, Le Liu, Fangfang Xia, Thomas J. Papadimos, Quanguang Wang

Downloads: 0
Views: 547

Abstract

Introduction

Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats.

Methods

A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg−1.min−1, and serial doses of apelin-13 (50, 150 and 450 μg.kg−1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay.

Results

Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05).

Conclusion

Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.

Keywords

Apelin; Bupivacaine; Cardiotoxicity; ProteinkinaseC; Sodiumchannel

Resumo

Introdução

A parada cardíaca ou arritmia causada pela bupivacaína pode ser refratária ao tratamento. Foi relatado que a apelina aumenta diretamente a frequência da ativação espontânea e a propagação de potenciais de ação, promovendo, em última análise, a contratilidade cardíaca. Este estudo teve como objetivo investigar os efeitos da apelina-13 na reversão da supressão cardíaca induzida pela bupivacaína em ratos.

Métodos

Um modelo de supressão cardíaca em ratos foi estabelecido por infusão intravenosa contínua de bupivacaína durante 3 minutos na taxa de 5 mg.kg-1.min-1 e doses seriadas de apelina-13 (50, 150 e 450 μg.kg-1) foram administrados para resgatar a supressão cardíaca para identificar sua relação dose-resposta. Usamos F13A, um inibidor do receptor semelhante à angiotensina 1 (APJ), e o inibidor da proteína quinase C (PKC) queleritrina para reverter os efeitos da apelina-13. Além disso, as expressões proteicas de PKC, Nav1.5 e APJ em tecidos ventriculares foram medidas utilizando western blotting e ensaio de imunofluorescência.

Resultados

Em comparação com os ratos controle, os ratos submetidos à administração intravenosa contínua de bupivacaína apresentaram estabilidade hemodinâmica prejudicada. A administração de apelina-13, de maneira dose-dependente, melhorou significativamente os parâmetros hemodinâmicos em ratos com supressão cardíaca induzida por bupivacaína (p <0,05), e o tratamento com apelina-13 também regulou significativamente as expressões proteicas de p-PKC e Nav1.5 (p < 0,05), esses efeitos foram anulados por F13A ou queleritrina (p < 0,05).

Conclusão

A apelina-13 exógena, pelo menos em parte, ativa a via de sinalização PKC através do sistema apelina/APJ para melhorar a função cardíaca em um modelo de supressão cardíaca induzida por bupivacaína em ratos.

Palavras-chave

Apelina; Bupivacaína; Cardiotoxicidade; Proteína quinase C; Canal de sódio

References

1. Mulroy MF. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg Anesth Pain Med. 2002;27:556−61.

2. Farkasfalvi K, Stagg MA, Coppen SR, et al. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun. 2007;357:889−95.

3. Ashley EA, Powers J, Chen M, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res. 2005;65:73−82. 4. Chamberland C, Barajas-Martinez H, Haufe V, et al. Modulation of canine cardiac sodium current by Apelin. J Mol Cell Cardiol. 2010;48:694−701.

5. Luo M, Yun X, Chen C, et al. Giving Priority to Lipid Administration Can Reduce Lung Injury Caused by Epinephrine in Bupivacaine-Induced Cardiac Depression. Reg Anesth Pain Med. 2016;41:469−76.

6. Tiani C, Garcia-Pras E, Mejias M, et al. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol. 2009;50:296−305. 7. Ustunel I, Acar N, Gemici B, et al. The effects of water immersion and restraint stress on the expressions of apelin, apelin receptor (APJR) and apoptosis rate in the rat heart. Acta Histochem. 2014;116:675−81.

8. Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002;91:434−40.

9. Wang C, Du JF, Wu F, et al. Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2008;294:H2540−6.

10. Japp AG, Newby DE. The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol. 2008;75:1882−92.

11. Katugampola SD, Maguire JJ, Matthewson SR, et al. [(125)I]-(Pyr (1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol. 2001;132:1255−60.

12. Salcedo A, Garijo J, Monge L, et al. Apelin effects in human splanchnic arteries. Role of nitric oxide and prostanoids. Regul Pept. 2007;144:50−5.

13. Japp AG, Cruden NL, Barnes G, et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation. 2010;121:1818−27.

14. Marionneau C, Lichti CF, Lindenbaum P, et al. Mass spectrometry-based identification of native cardiac Nav1.5 channel alpha subunit phosphorylation sites. J Proteome Res. 2012;11:5994 −6007.

15. Cheng CC, Weerateerangkul P, Lu YY, et al. Apelin regulates the electrophysiological characteristics of atrial myocytes. Eur J Clin Invest. 2013;43:34−40.


Submitted date:
09/04/2023

Accepted date:
03/26/2024

66315e8da9539532b5253274 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections