Assessment of the learning curve of peribulbar blocks using the Learning-Curve Cumulative Sum Method (LC-CUSUM): An observational study
Avaliação da curva de aprendizado de bloqueios peribulbares pelo Método da Soma Cumulativa da Curva de Aprendizagem (LC-CUSUM): Um estudo observacional
Getúlio Rodrigues de Oliveira Filho, Victor Medeiros Benincá
Abstract
Introduction
This study aimed to assess the learning curves of peribulbar anesthesia and estimate the number of blocks needed to attain proficiency.
Methods
Anonymized records of sequential peribulbar blocks performed by first-year anesthesia residents were analyzed. The block sequential number and the outcomes were extracted from each record. Success was defined as a complete sensory and motor block of the eye, and failure was defined as an incomplete block requiring supplemental local anesthetic injections or general anesthesia. Learning curves using the LC-CUSUM method were constructed, aiming for acceptable and unacceptable failure rates of 10% and 20%, and 10% probability of type I and II errors. Simulations were used to determine the proficiency limit h0. Residents whose curves reached h0were considered proficient. The Sequential Probability Ratio Test Cumulative Sum Method (SPRT-CUSUM) was used for follow-up.
Results
Thirty-nine residents performed 2076 blocks (median = 52 blocks per resident; Interquartile Range (IQR) [range] = 27–78 [4–132]). Thirty residents (77%) achieved proficiency after a median of 13 blocks (13–24 [13–24]).
Conclusions
The LC-CUSUM is a robust method for detecting resident proficiency at peribulbar anesthesia, defined as success rates exceeding 90%. Accordingly, 13 to 24 supervised double-injection peribulbar blocks are needed to attain competence at peribulbar anesthesia.
Keywords
Resumo
Introdução
Este estudo teve como objetivo avaliar as curvas de aprendizado da anestesia peribulbar e estimar o número de bloqueios necessários para atingir a proficiência.
Métodos
Foram analisados registros anônimos de bloqueios peribulbares sequenciais realizados por residentes de anestesia do primeiro ano. O número sequencial do bloqueio e os resultados foram extraídos de cada registro. O sucesso foi definido como um bloqueio sensorial e motor completo do olho, e a falha foi definida como um bloqueio incompleto que requer injeções suplementares de anestésico local ou anestesia geral. Foram construídas curvas de aprendizado utilizando o método LC-CUSUM, visando taxas de falhas aceitáveis e inaceitáveis de 10% e 20%, e 10% de probabilidade de erros do tipo I e II. Simulações foram utilizadas para determinar o limite de proficiência h0. Foram considerados proficientes os residentes cujas curvas atingiram h0. O método de soma cumulativa do teste de razão de probabilidade sequencial (SPRT-CUSUM) foi utilizado para acompanhamento.
Resultados
Trinta e nove residentes realizaram 2.076 bloqueios (mediana = 52 bloqueios por residente; Intervalo Interquartil (IQR) [intervalo] = 27–78 [4–132]). Trinta residentes (77%) alcançaram proficiência após uma mediana de 13 bloqueios (13–24 [13–24]).
Conclusão
O LC-CUSUM é um método robusto para detectar a proficiência do residente em anestesia peribulbar, definida como taxas de sucesso superiores a 90%. Consequentemente, são necessários 13 a 24 bloqueios peribulbares supervisionados com injeção dupla para obter competência na anestesia peribulbar.
Palavras-chave
References
1. de Oliveira Filho GR. The Construction of Learning Curves for Basic Skills in Anesthetic Procedures: An Application for the Cumulative Sum Method. Anesth Analg. 2002;95:411−6.
2. Kestin IG. A statistical approach to measuring the competence of anesthetic trainees at practical procedures. Br J Anaesth. 1995;75:805−9.
3. Biau DJ, Porcher R. A method for monitoring a process from an out of control to an in control state: Application to the learning curve. Stat Med. 2010;29:1900−9.
4. Starkie T, Drake EJ. Assessment of procedural skills training and performance in anesthesia using cumulative sum analysis (cusum). Can Anesth. 2013;60:1228−39.
5. Correa JBB, Dellazzana JEF, Sturm A, Leite DMA, de Oliveira Filho GR, Xavier RG. Using the Cusum curve to evaluate the training of orotracheal intubation with the Truview EVO2 laryngoscope. Rev Bras Anestesiol. 2009;59:321−31.
6. Sims AJ, Keltie K, Burn J, Robson SC. Assessment of competency in clinical measurement: comparison of two forms of sequential test and sensitivity of test error rates to parameter choice. Int J Qual Health Care J Int Soc Qual Health Care. 2013;25:322−30.
7. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006;25:4279−92.
8. Davis DB, Mandel MR. Efficacy and complication rate of 16,224 consecutive peribulbar blocks. A prospective multicenter study. J Cataract Refract Surg. 1994;20:327−37.
9. Crawford M, Kerr WJ. The effect of hyaluronidase on peribulbar block. Anaesthesia. 1994;49:907−8.
10. Alves DR, Baltazar I, Alves J, Almeida T, Santos D, Abreu H. Peribulbar Blocks: The Experience of a Specialized Ophthalmologic Surgery Centre. Glob J Med Res. 2017. at < https://medicalresearchjournal.org/index.php/GJMR/article/view/1381 >.
11. Clarke JP, Roberton G, Plummer J. Sub-Tenon Block: A Learning Curve of 100 Cases. Anaesth Intensive Care. 2006;34:450−2.
12. Kallio H, Rosenberg PH. Advances in ophthalmic regional anesthesia. Best Pract Res Clin Anaesthesiol. 2005;19:215−27.
Submitted date:
10/20/2022
Accepted date:
09/07/2023