Neuroligins facilitate the development of bone cancer pain via regulating synaptic transmission: an experimental study
As neuroliginas facilitam o desenvolvimento da dor do câncer ósseo através da regulação da transmissão sináptica: um estudo experimental
Xianqiao Xie, Yang Li, Shanchun Su, Xiaohui Li, Xueqin Xu, Yan Gao, Minjing Peng, Changbin Ke
Abstract
Background
The underlying mechanism of chronic pain involves the plasticity in synaptic receptors and neurotransmitters. This study aimed to investigate potential roles of Neuroligins (NLs) within the spinal dorsal horn of rats in a newly established Bone Cancer Pain (BCP) model. The objective was to explore the mechanism of neuroligin involved in the occurrence and development of bone cancer pain.
Methods
Using our rat BCP model, we assessed pain hypersensitivity over time. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to investigate NL expression, and NLs were overexpressed in the rat spinal cord using lentiviral vectors. Immunofluorescence staining and whole-cell patch-clamp recordings were deployed to investigate the role of NLs in the development of BCP.
Results
We observed reduced expression levels of NL1 and NL2, but not of NL3, within the rat spinal cord, which were found to be associated with and essential for the development of BCP in our model. Accordingly, NL1 or NL2 overexpression in the spinal cord alleviated mechanical hypersensitivity of rats. Electrophysiological experiments indicated that NL1 and NL2 are involved in BCP via regulating γ-aminobutyric acid-ergic interneuronal synapses and the activity of glutamatergic interneuronal synapses, respectively.
Conclusions
Our observations unravel the role of NLs in cancer-related chronic pain and further suggest that inhibitory mechanisms are central features of BCP in the spinal dorsal horn. These results provide a new perspective and basis for subsequent studies elucidating the onset and progression of BCP.
Keywords
Resumo
Introdução
O mecanismo subjacente da dor crônica envolve a plasticidade dos receptores sinápticos e neurotransmissores. Este estudo teve como objetivo investigar os papéis potenciais das neuroliginas (NLs) no corno espinhal dorsal de ratos em um modelo recém-estabelecido de dor por câncer ósseo (BCP). O objetivo foi explorar o mecanismo da neuroligina envolvido na ocorrência e desenvolvimento da dor do câncer ósseo.
Métodos
Usando nosso modelo BCP de rato, avaliamos a hipersensibilidade à dor ao longo do tempo. A reação em cadeia da polimerase quantitativa em tempo real e a análise de Western blot foram realizadas para investigar a expressão de NL, e os NLs foram superexpressos na medula espinhal de ratos usando vetores lentivirais. A coloração por imunofluorescência e os registros de patch-clamp de células inteiras foram implantados para investigar o papel dos NLs no desenvolvimento do BCP.
Resultados
Observamos níveis reduzidos de expressão de NL1 e NL2, mas não de NL3, na medula espinhal de ratos, que foram associados e essenciais para o desenvolvimento de BCP em nosso modelo. Consequentemente, a superexpressão de NL1 ou NL2 na medula espinhal aliviou a hipersensibilidade mecânica de ratos. Experimentos eletrofisiológicos indicaram que NL1 e NL2 estão envolvidos no BCP através da regulação das sinapses interneuronais alérgicas ao ácido γ-aminobutírico e da atividade das sinapses interneuronais glutamatérgicas, respectivamente.
Conclusão
Nossas observações desvendam o papel dos NLs na dor crônica relacionada ao câncer e sugerem ainda que os mecanismos inibitórios são características centrais do BCP no corno dorsal da coluna vertebral. Estes resultados fornecem uma nova perspectiva e base para estudos subsequentes que elucidam o início e a progressão do BCP.
Palavras-chave
References
1. Varoqueaux F, Aramuni G, Rawson RL, et al. Neuroligins determine synapse maturation and function. Neuron. 2006;51:741−54.
2. Baudouin S, Scheiffele P. SnapShot: Neuroligin-neurexin complexes. Cell. 2010;141:908.. 908 e901.
3. Levinson JN, Li R, Kang R, Moukhles H, El-Husseini A, Bamji SX. Postsynaptic scaffolding molecules modulate the localization of neuroligins. Neuroscience. 2010;165:782−93.
4. Bemben MA, Shipman SL, Nicoll RA, Roche KW. The cellular and molecular landscape of neuroligins[J]. Trends Neurosciences. 2015;38:496−505.
5. Hoon M, Soykan T, Falkenburger B, et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A. 2011;108:3053−8.
6. Lin T-B, Lai C-Y, Hsieh M-C, et al. Neuropathic allodynia involves spinal neurexin-1b-dependent neuroligin-1/postsynaptic density95/NR2B cascade in rats. Anesthesiology. 2015;123:909−26.
7. Mondin M, Labrousse V, Hosy E, et al. Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J Neurosci. 2011;31:13500−15.
8. Budreck EC, Kwon OB, Jung JH, et al. Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci U S A. 2013;110:725−30.
9. Choii G, Ko J. Gephyrin: a central GABAergic synapse organizer. Exp Mol Med. 2015;47:e158.
10. Antonelli R, Pizzarelli R, Pedroni A, et al. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nat Commun. 2014;5:5066.
11. Shipman SL, Schnell E, Hirai T, BS Chen, Roche KW, Nicoll RA. Functional dependence of neuroligin on a new non-PDZ intracellular domain. Nat Neurosci. 2011;14:718−26.
12. Marro SG, Chanda S, Yang N, Janas JA, Valperga G, Trotter J, et al. Neuroligin-4 regulates excitatory synaptic transmission in human neurons. Neuron. 2019;103:617−26.e616.
13. Guo R, Li H, Li X, et al. Increased neuroligin 2 levels in the postsynaptic membrane in spinal dorsal horn may contribute to postoperative pain. Neuroscience. 2018;382:14−22.
14. Dolique T, Favereaux A, Roca-Lapirot O, et al. Unexpected association of the "inhibitory" neuroligin 2 with excitatory PSD95 in neuropathic pain. Pain. 2013;154:2529−46.
15. Zhao JY, Duan XL, Yang L, et al. Activity-dependent synaptic recruitment of neuroligin 1 in spinal dorsal horn contributed to inflammatory pain. Neuroscience. 2018;388:1−10.
16. Spicarova D, Adamek P, Kalynovska N, Mrozkova P, Palecek J. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology. 2014;81:75−84.
17. Ke C, Li C, Huang X, Cao F, Shi D, He W, et al. Protocadherin20 promotes excitatory synaptogenesis in dorsal horn and contributes to bone cancer pain[J]. Neuropharmacology. 2013;75:181−90.
18. Ke C, Gao F, Tian X, Li C, Shi D, He W, et al. Slit2/Robo1 Mediation of Synaptic Plasticity Contributes to Bone Cancer Pain. Mol Neurobiol. 2017;54:295−307.
19. Ghosh A, Greenberg ME. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis [J]. Neuron. 1995;15:89−103.
20. Turkez H, Togar B, Di Stefano A, Tasp{nar N, Sozio P. Protective effects of cyclosativene on H2O2-induced injury in cultured rat primary cerebral cortex cells[J]. Cytotechnology (Dordrecht). 2015;67:299−309.
21. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25−9.
22. Jedlicka P, Vnencak M, Krueger DD, Jungenitz T, Brose N, Schwarzacher SW. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct. 2015;220:47−58.
23. Shipman SL, Nicoll RA. A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron. 2012;76:309−16.
24. Chih B, Engelman H, Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science. 2005;307:1324−8.
25. Dahlhaus R, Hines RM, Eadie BD, et al. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Hippocampus. 2010;20:305−22.
26. Li J, Han W, Pelkey KA, et al. Molecular dissection of neuroligin 2 and slitrk3 reveals an essential framework for GABAergic synapse development. Neuron. 2017;96:808−26. e808.
27. Gibson JR, Huber KM, Sudhof TC. Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci. 2009;29:13883−97.
28. Xia Q Q, Xu J, Liao TL, Yu J, Shi L, Xia J, et al. Neuroligins differentially mediate subtype-specific synapse formation in pyramidal neurons and interneurons. Neurosci Bull. 2019;35:497−506.
29. Chubykin AA, Atasoy D, Etherton MR, et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron. 2007;54:919−31.
30. Ravyts SG, Dzierzewski JM, Grah SC, et al. Pain inconsistency and sleep in mid to late-life: the role of depression. Aging Ment Health. 2019;23:1174−9.
31. Nicholas MK. Depression in people with pain: There is still work to do Commentary on ‘Understanding the link between depression and pain’. Scand J Pain. 2011;2:45−6.
32. Nicholas MK. Understanding the link between depression and pain. Scand J Pain. 2011;2:45−6.
Submitted date:
09/20/2022
Accepted date:
02/13/2023