Upper airway angle and glottic height: a prospective cohort to evaluate two new features for airway prediction
Ângulo das vias aéreas superiores e altura glótica: uma coorte prospectiva para avaliar dois novos recursos para predição das vias aéreas
Clístenes Crístian de Carvalho, Danielle Melo da Silva, Marina Sampaio Leite, Lívia Barboza de Andrade
Abstract
Background
Predicting difficult direct laryngoscopies remains challenging and improvements are needed in preoperative airway assessment. We conceived two new tests (the upper airway angle and the glottic height) and assessed their association with difficult direct laryngoscopies as well as their predictive performance.
Methods
A prospective cohort was conducted with 211 patients undergoing general anesthesia for surgical procedures. We assessed the association between difficult laryngoscopies and modified Mallampati Test (MMT), Upper Lip Bite Test (ULBT), Mandibular Length (ML), Neck Circumference (NC), Mouth Opening (MO), Sternomental Distance (SMD), Thyromental Distance (TMD), Upper Airway Angle (UAA), and Glottic Height (GH). We also estimated their predictive values.
Results
Difficult laryngoscopy was presented by 12 patients (5.7%). Six tests were significantly associated with difficult laryngoscopies and their area under the ROC curve, and 95% CIs were as follows: UAA = 88.82 (81.86–95.78); GH = 86.43 (72.67–100); ML = 83.75 (72.77–94.74); NC = 79.17 (64.98–93.36); MO = 65.58 (45.13–86.02); and MMT = 77.89 (68.37–87.41).
Conclusion
We have found two new features (the UAA and the GH) to be significantly associated with the occurrence of difficult direct laryngoscopies. They also presented the best predictive performance amongst the nine evaluated tests in our cohort of patients. We cannot ensure, however, these tests to be superior to other regularly used bedside tests based on our estimated 95% CIs.
Keywords
Resumo
Introdução
A previsão de laringoscopias diretas difíceis continua sendo um desafio e melhorias são necessárias na avaliação pré-operatória das vias aéreas. Concebemos dois novos testes (o ângulo da via aérea superior e a altura glótica) e avaliamos sua associação com laringoscopias diretas difíceis, bem como seu desempenho preditivo.
Métodos
Uma coorte prospectiva foi realizada com 211 pacientes submetidos à anestesia geral para procedimentos cirúrgicos. Avaliamos a associação entre laringoscopias difíceis e teste de Mallampati modificado (MMT), teste de mordida do lábio superior (ULBT), comprimento mandibular (ML), circunferência do pescoço (NC), abertura da boca (MO), distância esternomental (SMD), distância tireomentoniana (DTM), Ângulo das Vias Aéreas Superiores (UAA) e Altura Glótica (GH). Também estimamos seus valores preditivos.
Resultados
A laringoscopia difícil foi apresentada por 12 pacientes (5,7%). Seis testes foram significativamente associados a laringoscopias difíceis e sua área sob a curva ROC, e os ICs de 95% foram os seguintes: UAA = 88,82 (81,86–95,78); GH = 86,43 (72,67–100); ML = 83,75 (72,77–94,74); NC = 79,17 (64,98–93,36); MO = 65,58 (45,13–86,02); e MMT = 77,89 (68,37–87,41).
Conclusão
Encontramos dois novos itens (UAA e GH) significativamente associados à ocorrência de laringoscopias diretas difíceis. Eles também apresentaram o melhor desempenho preditivo entre os nove testes avaliados em nossa coorte de pacientes. Não podemos garantir, no entanto, que esses testes sejam superiores a outros testes de beira de leito usados regularmente com base em nossos ICs estimados de 95%.
Palavras-chave
References
1 TM Cook, N Woodall, J Harper, J Benger, Fourth National Audit Project Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia Br J Anaesth, 106 (2011), pp. 617-631
2 T Tikka, OJ. Hilmi Upper airway tract complications of endotracheal intubation Br J of Hosp Med, 80 (2019), pp. 441-447
3 EU Umobong, PH. Mayo Critical Care Airway Management Critl Care Clin, 34 (2018), pp. 313-324
4 A Vannucci, LF. Cavallone Bedside predictors of difficult intubation : a systematic review Minerva Anestesiol, 82 (2016), pp. 69-83
5 P. Baker Assessment Before Airway Management Anesthesiol Clin, 33 (2015), pp. 257-278
6 SM. Yentis Predicting difficult intubation–worthwhile exercise or pointless ritual? Anaesthesia, 57 (2002), pp. 105-109
7 JJ Pandit, T. Heidegger Putting the “point” back into the ritual: a binary approach to difficult airway prediction Anaesthesia, 72 (2017), pp. 283-288
8 T Shiga, Z Wajima, T Inoue, A. Sakamoto Predicting difficult intubation in apparently normal patients: a meta-analysis of bedside screening test performance Anesthesiology, 103 (2005), pp. 429-437
9 AK Nørskov, CV Rosenstock, J Wetterslev, G Astrup, A Afshari, LH. Lundstrøm Diagnostic accuracy of anaesthesiologists’ prediction of difficult airway management in daily clinical practice: A cohort study of 188 064 patients registered in the Danish Anaesthesia Database Anaesthesia., 70 (2015), pp. 272-281
10 WH Teoh, MS. Kristensen Prediction in airway management: what is worthwhile, what is a waste of time and what about the future? Br J Anaesth, 117 (2016), pp. 1-3
11 CC de Carvalho, DM da Silva, AD de Carvalho Junior, et al. Pre-operative voice evaluation as a hypothetical predictor of difficult laryngoscopy Anaesthesia, 74 (2019), pp. 1147-1152
12 JL Apfelbaum, CA Hagberg, RA Caplan, et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway Anesthesiology, 118 (2013), pp. 251-270
13 C Frerk, VS Mitchell, AF McNarry, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults Br J Anaesth, 115 (2015), pp. 827-848
14 A Higgs, BA McGrath, C Goddard, et al. Guidelines for the management of tracheal intubation in critically ill adults Br J Anaesth, 120 (2018), pp. 23-52
15 JA Law, LV Duggan, M Asselin, et al. Canadian Airway Focus Group updated consensus – based recommendations for management of the difficult airway: part 2. Planning and implementing safe management of the patient with an anticipated difficult airway Can J Anaesth, 68 (2021), pp. 1405-1436
16 TM. Cook A new practical classification of laryngeal view Anaesthesia, 55 (2000), pp. 274-279
17 K Gupta, PK. Gupta Assessment of difficult laryngoscopy by electronically measured maxillo-pharyngeal angle on lateral cervical radiograph: A prospective study Saudi J Anaesth, 4 (2010), pp. 158-162
18 M Naguib, T Malabarey, RA Alsatli, Damegh S Al, AH Samarkandi Predictive models for difficult laryngoscopy and intubation. A clinical, radiologic and three-dimensional computer imaging study Can J Anaesth, 46 (1999), pp. 748-759
19 CC Carvalho, JM Santos Neto, FA de Orange Predictive performance of thyromental height for difficult laryngoscopies in adults: a systematic review and meta-analysis Braz J Anesthesiol (2021), 10.1016/j.bjane.2021.06.015 Online ahead of print
20 F Etezadi, A Ahangari, H Shokri, et al. Thyromental height: A new clinical test for prediction of difficult laryngoscopy Anesth Analg, 117 (2013), pp. 1347-1351
21 RS Cormack, J. Lehane Difficult tracheal intubation in obstetrics Anaesthesia, 39 (1984), pp. 1105-1111
22 YOUNG JRB SAMSOON GLT Difficult tracheal intubation: a retrospective study Anaesthesia, 42 (1987), pp. 487-490
23 I Schindelin j, Arganda-Carreras, E Frise, et al. Fiji: na open-source platform for biological-image analysis Nat Methods, 9 (2012), pp. 676-682
24 R Core Team R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria (2019) URL www.R-project.org/ (accessed 08/12/2019)
25 Dean AG, Sullivan KM, Soe MM. OpenEpi: Open-Source Epidemiologic Statistics for Public Health, 2013. www.OpenEpi.com (accessed 09/15/2019).
26 D Roth, NL Pace, A Lee, et al. Bedside tests for predicting difficult airways: an abridged Cochrane diagnostic test accuracy systematic review Anaesthesia, 74 (2019), pp. 915-928
27 MA Bujang, TH. Adnan Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis J Clin Diagn Res, 10 (2016), pp. YE01-YE06
28 C Carvalho, D da Silva, M. Leite Dataset from a Cohort study assessing the association between difficult laryngoscopies and two new features (the Upper Airway Angle and the Glottic Height Mendeley Data (2021), 10.17632/vvkx4hjmp3.1
29 ME Detsky, N Jivraj, NK Adhikari, et al. Will This Patient Be Difficult to Intubate?: The Rational Clinical Examination Systematic Review JAMA, 32 (2019), pp. 493-503