The effects of positive end-expiratory pressure (PEEP) application on optic nerve sheath diameter in patients undergoing laparoscopic cholecystectomy: a randomized trial
Os efeitos da aplicação de pressão expiratória final positiva (PEEP) no diâmetro da bainha do nervo óptico em pacientes submetidos à colecistectomia laparoscópica: um ensaio randomizado
Seher Yanatma, Reyhan Polat, Mehmet Murat Sayın, Safinaz Karabayırlı
Abstract
Background
Positive end-expiratory pressure (PEEP) can overcome respiratory changes that occur during pneumoperitoneum application in laparoscopic procedures, but it can also increase intracranial pressure. We investigated PEEP vs. no PEEP application on ultrasound measurement of optic nerve sheath diameter (indirect measure of increased intracranial pressure) in laparoscopic cholecystectomy.
Methods
Eighty ASA I–II patients aged between 18 and 60 years scheduled for elective laparoscopic cholecystectomy were included. The study was registered in the Australian New Zealand Clinical Trials (ACTRN12618000771257). Patients were randomly divided into either Group C (control, PEEP not applied), or Group P (PEEP applied at 10 cmH20). Optic nerve sheath diameter, hemodynamic, and respiratory parameters were recorded at six different time points. Ocular ultrasonography was used to measure optic nerve sheath diameter.
Results
Peak pressure (PPeak) values were significantly higher in Group P after application of PEEP (p = 0.012). Mean respiratory rate was higher in Group C at all time points after application of pneumoperitoneum (p < 0.05). The mean values of optic nerve sheath diameters measured at all time points were similar between the groups (p > 0.05). The pulmonary dynamic compliance value was significantly higher in group P as long as PEEP was applied (p = 0.001).
Conclusions
During laparoscopic cholecystectomy, application of 10 cmH2O PEEP did not induce a significant change in optic nerve sheath diameter (indirect indicator of intracranial pressure) compared to no PEEP application. It would appear that PEEP can be used safely to correct respiratory mechanics in cases of laparoscopic cholecystectomy, with no significant effect on optic nerve sheath diameter.
Keywords
Resumo
Introdução
A pressão expiratória final positiva (PEEP) pode superar as alterações respiratórias que ocorrem durante a aplicação do pneumoperitônio em procedimentos laparoscópicos, mas também pode aumentar a pressão intracraniana. Nós investigamos PEEP versus nenhuma aplicação de PEEP na medição ultrassonográfica do diâmetro da bainha do nervo óptico (medida indireta do aumento da pressão intracraniana) na colecistectomia laparoscópica.
Métodos
Foram incluídos 80 pacientes, estado físico ASA I–II, com idade entre 18 e 60 anos, agendados para colecistectomia laparoscópica eletiva. O estudo foi registrado no Australian New Zealand Clinical Trials (ACTRN12618000771257). Os pacientes foram divididos aleatoriamente em Grupo C (controle, PEEP não aplicada) ou Grupo P (PEEP aplicada a 10 cmH20). O diâmetro da bainha do nervo óptico, os parâmetros hemodinâmicos e respiratórios foram registrados em seis momentos diferentes. A ultrassonografia ocular foi utilizada para medir o diâmetro da bainha do nervo óptico.
Resultados
Os valores de pico de pressão (PPeak) foram significativamente maiores no Grupo P após aplicação da PEEP (p = 0,012). A frequência respiratória média foi maior no Grupo C em todos os momentos após a aplicação do pneumoperitônio (p < 0,05). Os valores médios dos diâmetros da bainha do nervo óptico medidos em todos os momentos foram semelhantes entre os grupos (p > 0,05). O valor da complacência dinâmica pulmonar foi significativamente maior no grupo P desde que aplicada PEEP (p = 0,001).
Conclusão
Durante a colecistectomia laparoscópica, a aplicação de PEEP de 10 cmH2O não induziu alteração significativa no diâmetro da bainha do nervo óptico (indicador indireto de pressão intracraniana) em comparação com nenhuma aplicação de PEEP. Parece que a PEEP pode ser usada com segurança para corrigir a mecânica respiratória em casos de colecistectomia laparoscópica, sem efeito significativo no diâmetro da bainha do nervo óptico.
Palavras-chave
References
1. Kundra P, Subramani Y, Ravishankar M, et al. Cardiorespiratory effects of balancing PEEP with intra-abdominal pressure during laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2014;24:232−9.
2. Russo A, Di Stasio E, Scagliusi A, et al. Positive end-expiratory pressure during laparoscopy: cardiac and respiratory effects. J Clin Anesth. 2013;25:314−20.
3. Sen O, Erdogan Doventas Y. Effects of different levels of end expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy. Rev Bras Anestesiol. 2017;67:28−34.
4. You AH, Song Y, Kim DH, et al. Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: a randomized, clinical trial. Medicine (Baltimore). 2019;98:e15051.
5. Chin J-H, Kim W-J, Lee J, et al. Effect of positive end- expiratory pressure on the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during robot-assisted laparoscopic prostatectomy: a randomized controlled trial. PLoS ONE. 2017;12:e0170369.
6. Mathews A, Cattamanchi S, Panneerselvam T, et al. Evaluation of bedside sonographic measurement of optic nerve sheath diameter for assessment of raised intracranial pressure in adult head trauma patients. J Emerg Trauma Shock. 2020;13:190−5.
7. Dip F, Nguyen D, Rosales A, et al. Impact of controlled intraabdominal pressure on the optic nerve sheath diameter during laparoscopic procedures. Surg Endosc. 2016;30:44−9.
8. Yashwashi T, Kaman L, Kajal K, et al. Effects of low- and highpressure carbon dioxide pneumoperitoneum on intracranial pressure during laparoscopic cholecystectomy. Surg Endosc. 2020;34:4369−73.
9. Kamine TH, Elmadhun NY, Kasper EM, et al. Abdominal insufflation for laparoscopy increases intracranial and intrathoracic pressure in human subjects. Surg Endosc. 2016;30:4029−32.
10. Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol. 2011;589(Pt 12):3039−48.
11. Van der Kleij LA, De Vis JB, de Bresser J, et al. Arterial CO(2) pressure changes during hypercapnia are associated with changes in brain parenchymal volume. Eur Radiol Exp. 2020;4:17.
12. Hiler M, Czosnyka M, Hutchinson P, et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg. 2006;104:731−7.
13. Schmidt B, Czosnyka M, Raabe A, et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003;34:84−9.
14. Kimberly HH, Shah S, Marill K, et al. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15:201−4.
15. Dubourg J, Javouhey E, Geeraerts T, et al. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and metaanalysis. Intensive Care Med. 2011;37:1059−68.
16. Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension I. Experimental study. Pediatr Radiol. 1996;26:701−5.
17. Robba C, Bragazzi NL, Bertuccio A, et al. Effects of prone position on positive end expiratory pressure on non-invasive estimators of ICP: a pilot study. J Neurosurg Anesthesiol. 2017;29:243−50.
18. Bedirli N, Emmez G, Unal Y, et al. Effects of positive end-expira- € tory pressure on intracranial pressure during pneumoperitoneum and Trendelenburg position in a porcine mode. Turk J Med Sci. 2017;147:1610−5.
19. Verdonck P, Kalmar AF, Suy K, et al. Optic nerve sheath diameter remains constant during robot-assisted laparoscopic radical prostatectomy. PLoS One. 2014;9:e111916.
20. Chin JH, Seo H, Lee EH, et al. Sonographic optic nerve sheath diameter as a surrogate measure for intracranial pressure in anesthetized patients in the Trendelenburg position. BMC Anesthesiol. 2015;15:43−9.
21. Whiteley JR, Taylor J, Henry M, et al. Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol. 2015;27:155−9.
22. Robba C, Cardim D, Donnelly J, et al. Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods. Br J Anaesth. 2016;117:783−91.
23. Chen K, Wang L, Wang Q, et al. Effects of pneumoperitoneum and steep Trendelenburg position on cerebral hemodynamics during robotic-assisted laparoscopic radical prostatectomy: a randomized controlled study. Medicine. 2019;98:e15794.
24. Kalmar AF, Foubert L, Hendrickx JF, et al. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433−9.
25. Haas S, Haese A, Goetz AE, et al. Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int J Med Robot. 2011;7:408−13.
26. Kwak HJ, Park SK, Lee KC. High positive end-expiratory pressure preserves cerebral oxygen saturation during laparoscopic cholecystectomy under propofol anesthesia. Surg Endosc. 2013;27:415−20.
27. Caricato A, Conti G, Della Corte F. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571−6.
28. Maude RR, Hossain MA, Hassan MU, et al. Transorbital sonographic evaluation of normal optic nerve sheath diameter in healthy volunteers in Bangladesh. PLoS One. 2013;8:e81013.
Submitted date:
12/12/2020
Accepted date:
12/19/2021