Perineural low dexamethasone dose as adjuvant in supraclavicular brachial plexus block for arteriovenous fistula creation in end stage renal disease: a randomized controlled trial
Baixa dose perineural de dexametasona como adjuvante no bloqueio supraclavicular do plexo braquial para criação de fístula arteriovenosa em doença renal terminal: um ensaio clínico randomizado
Aparna Pande, Indu Mohini Sen, Aakriti Gupta, Ankur Gupta, Ashish Sharma
Abstract
Background and aims
Dexamethasone as adjunct to local anesthetic solution improves the quality of brachial plexus block (BPB). However, evidence for its efficacy at low doses (< 4 mg) is lacking. This study was designed to evaluate the duration of analgesia attained with low dose dexamethasone as adjuvant to local anesthetic for creation of arteriovenous fistula (AVF) under BPB.
Methods
Sixty-six patients scheduled for AVF creation were randomly allocated to receive either saline (control) or 2 mg dexamethasone, together with 0.5% ropivacaine and 2% lignocaine. The primary outcome was duration of analgesia, defined as time from performing the block to the first analgesic request. The secondary outcomes were time from injection to complete sensory block, time from injection to complete motor block, duration of motor block, postoperative analgesic consumption, and fistula patency at three months.
Results
All the blocks were effective. In the group that received dexamethasone, the time to first analgesic request was significantly delayed (432 ± 43.8 minutes vs. 386.4 ± 40.2 minutes; p < 0.01). The onset of sensory and motor blockade occurred faster in dexamethasone group and overall analgesic consumption was also reduced. However, dexamethasone addition did not prolong the duration of motor block. There was no statistically significant difference in the patency of fistulas between the two groups at three months. (p = 0.34).
Conclusion
Addition of low-dose perineural dexamethasone to local anesthetic solution significantly prolonged the duration of analgesia. Further trials are warranted to compare the adverse effects between dexamethasone doses of 4 mg and lower.
Keywords
Resumo
Introdução
A dexametasona como adjuvante da solução anestésica local melhora a qualidade do bloqueio do plexo braquial (BPB). No entanto, faltam evidências de sua eficácia em doses baixas (< 4 mg). Este estudo foi desenhado para avaliar a duração da analgesia obtida com dexametasona em baixas doses como adjuvante do anestésico local para criação de fístula arteriovenosa (FAV) sob BPB.
Métodos
Sessenta e seis pacientes programados para criação de FAV foram alocados aleatoriamente para receber solução salina (controle) ou 2 mg de dexametasona, juntamente com ropivacaína a 0,5% e lidocaína a 0,2%. O desfecho primário foi a duração da analgesia, definida como o tempo desde a realização do bloqueio até a primeira solicitação de analgésico. Os desfechos secundários foram o tempo desde a injeção até o bloqueio sensitivo completo, o tempo desde a injeção até o bloqueio motor completo, a duração do bloqueio motor, o consumo de analgésico no pós-operatório e a desobstrução da fístula em três meses.
Resultados
Todos os bloqueios foram eficazes. No grupo que recebeu dexametasona, o tempo até a primeira solicitação de analgésico foi significativamente retardado (432 ± 43,8 minutos vs. 386,4 ± 40,2 minutos; p < 0,01). O início do bloqueio sensorial e motor ocorreu mais rapidamente no grupo dexametasona e o consumo global de analgésicos também foi reduzido. Contudo, a adição de dexametasona não prolongou a duração do bloqueio motor. Não houve diferença estatisticamente significativa na patência das fístulas entre os dois grupos aos três meses. (p = 0,34).
Conclusão
A adição de dexametasona perineural em baixas doses à solução anestésica local prolongou significativamente a duração da analgesia. Mais ensaios são necessários para comparar os efeitos adversos entre doses de dexametasona de 4 mg e inferiores.
Palavras-chave
References
1. Choi S, Rodseth R, McCartney CJ. Effects of dexamethasone as a local anaesthetic adjuvant for brachial plexus block: a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2014;112:427−39.
2. Albrecht E, Kern C, Kirkham KR. A systematic review and metaanalysis of perineural dexamethasone for peripheral nerve blocks. Anesthesia. 2015;70:71−83.
3. Huynh TM, Marret E, Bonnet F. Combination of dexamethasone and local anaesthetic solution in peripheral nerve blocks: a meta-analysis of randomised controlled trials. Eur J Anaesthesiol. 2015;32:751−8.
4. Gupta A, Gupta A, Yadav N. Effect of dexamethasone as an adjuvant to ropivacaine on duration and quality of analgesia in ultrasound-guided transversus abdominis plane block in patients undergoing lower segment cesarean section - A prospective, randomised, single-blinded study. Indian J Anaesth. 2019;63:469−74.
5. Kirkham KR, Jacot-Guillarmod A, Albrecht E. Optimal dose of perineural dexamethasone to prolong analgesia after brachial plexus blockade: a systematic review and meta-analysis. Anesth Analg. 2018;126:270−9.
6. Bartlett R, Hartle AJ. Routine use of dexamethasone for postoperative nausea and vomiting: the case against. Anesthesia. 2013;68:892−6.
7. Williams BA, Schott NJ, Mangione MP, et al. Perineural dexamethasone and multimodal perineural analgesia: how much is too much? Anesth Analg. 2014;18:912−4.
8. Gaumann D, Forster A, Griessen M, et al. Comparison between clonidine and epinephrine admixture to lidocaine in brachial plexus block. Anesth Analg. 1992;75:69−74.
9. Ilfeld BM. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth Analg. 2017;124:308−35.
10. Wahal C, Kumar A, Pyati S. Advances in regional anesthesia: A review of current practice, newer techniques and outcomes. Indian J Anaesth. 2018;62:94−102.
11. Bailard NS, Ortiz J, Flores RA. Additives to local anesthetics for peripheral nerve blocks: Evidence, limitations, and recommendations. Am J Health Syst Pharm. 2014;71:373−85.
12. Swain A, Nag DS, Sahu S, et al. Adjuvants to local anesthetics: Current understanding and future trends. World J Clin Cases. 2017;5:307−23.
13. Bhatia A, Flamer D, Shah PS. Perineural steroids for trauma and compression-related peripheral neuropathic pain: a systematic review and meta-analysis. Can J Anaesth. 2015;62:650−62.
14. Marks R, Barlow JW, Funder JW. Steroid-induced vasoconstriction: Glucocorticoid antagonist studies. J Clinical Endocrinol Metabol. 1982;54:1075−7.
15. Johansson A, Hao J, Sjolund B. Local corticosteroid application blocks transmission in normal nociceptive C-fibres. Acta Anaesthesiol Scand. 1990;34:335−8.
16. Biradar PA, Kannappady G, Padmanabha K. Effect of dexamethasone added to lidocaine in supraclavicular brachial plexus block: A prospective, randomized, double-blind study. Indian J Anaesth. 2013;57:180−4.
17. Liu J, Richman KA, Grodofsky SR, et al. Is there a dose response of dexamethasone as adjuvant for supraclavicular brachial plexus nerve block? A prospective randomized double-blinded clinical study. J Clinical Anesth. 2015;27:237−42.
18. Woo JH, Kim YJ, Kim DY, et al. Dose-dependency of dexamethasone on the analgesic effect of interscalene block for arthroscopic shoulder surgery using ropivacaine 0.5%: a randomised controlled trial. Eur J Anaesthesiol. 2015;32:650−5.
19. Albrecht E, Reynvoet M, Fournier N, et al. Dose−response relationship of perineural dexamethasone for interscalene brachial plexus block: a randomised, controlled, triple-blind trial. Anesthesia. 2019;74:1001−8.
20. Bravo D, Aliste J, Layera S, et al. A multicenter, randomized comparison between 2, 5, and 8 mg of perineural dexamethasone for ultrasound-guided infraclavicular block. Reg Anesth Pain Med. 2019;44:46−51.
21. Abdallah FW, Halpern SH, Aoyama K, et al. Will the Real Benefits of Single-Shot Interscalene Block Please Stand Up? A Systematic Review and Meta-Analysis. Anesth Analg. 2015;120:1114−29.
22. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. Pain. 2000;88:287−94.
23. McGrogan DG, Maxwell AP, Khawaja AZ, et al. Current tools for prediction of arteriovenous fistula outcomes. Clin Kidney J. 2015;8:278−81.
24. Renaud CJ, Leong CR, Bin HW, et al. Effect of brachial plexus block-driven vascular access planning on primary distal arteriovenous fistula recruitment and outcomes. J Vasc Surg. 2015;62. 1266-12.
25. Gao C, Weng C, He C, et al. Comparison of regional and local anesthesia for arteriovenous fistula creation in end-stage renal disease: a systematic review and meta-analysis. BMC Anesthesiol. 2020;20:e219.
26. Ismail A, Abushouk AI, Bekhet AH, et al. Regional versus local anesthesia for arteriovenous fistula creation in end-stage renal disease: a systematic review and meta-analysis. J Vasc Access. 2017;18:177−84.
27. McGrogan DG, Maxwell AP, Khawaja AZ, et al. Current tools for prediction of arteriovenous fistula outcomes. Clin Kidney J. 2015;8:278−81.
28. Khavanin ZM, Mohammadipour S, Omrani Z. Correlation between CRP and early failure of arteriovenous fistula. Med J Islam Repub Iran. 2015;29:219−23