Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1016/j.bjane.2021.07.036
Brazilian Journal of Anesthesiology
Original Investigation

End-tidal carbon dioxide measurements as a surrogate to arterial carbon dioxide during pediatric laparoscopic surgeries: a prospective observational cohort study

Medições de dióxido de carbono expirado como substituto do dióxido de carbono arterial durante cirurgias laparoscópicas pediátricas: um estudo de coorte observacional prospectivo

Hala Saad Abdel-Ghaffar; Mohammed Abdel-Moneim Bakr; Mohamed Abdel-Kadr Osman; Sarah George Labib Hanna; Wesam Nashat Ali

Downloads: 0
Views: 944

Abstract

Background
Maintaining normocapnia during mechanical ventilation in anesthetized children during laparoscopic surgeries is highly recommended. There is a debate regarding the use of capnography (ETCO2) as a trend monitor for evaluation of arterial carbon dioxide levels (PaCO2). We analyzed the relationship between ETCO2 and PaCO2 with time in elective pediatric laparoscopic surgeries.

Methods
This study was a prospective observational cohort analysis of 116 paired comparisons between PaCO2 and ETCO2 computed from 29 children (ASA I, 12–72 months). Arterial blood samples were withdrawn before, at 15 minutes and 30 minutes during pneumoperitoneum and 1 minute after deflation. ETCO2 value was recorded simultaneously, while arterial blood was withdrawn. PaCO2–ETCO2 relationship was evaluated by Pearson's correlation coefficients and Bland Altman Method of agreement.

Results
Out of the 116 comparisons analyzed, a PaCO2–ETCO2 difference beyond 0 to ≤ 5 mmHg was recorded in 71 comparisons (61.2%) with negative difference in 34 comparisons (29.3%). A positive significant correlation between PaCO2 and ETCO2 was recorded before (r = 0.617, p =  0.000) and at 15 minutes (r = 0.582, p =  0.001), with no significant correlation at 30 minutes (r = 0.142, p =  0.461), either after deflation (r = 0.108, p =  0.577). Bland-Altman plots showed agreement between ETCO2 and PaCO2 before inflation with mean PaCO2-ETCO2 difference 0.14 ± 5.6 mmHg (limits of 95% agreement -10.84–11.2, simple linear regression testing p-value 0.971), with no agreement at 15 minutes (0.51 ± 7.15, -13.5–14.5, p = 0.000), 30 minutes. (2.62 ± 7.83, -12.73–17.97, p = 0.000), or after deflation (1.81 ± 6.56, -10.93–14.55, p =  0.015).

Conclusion
Usage of capnography as a trend monitor in pediatric laparoscopic surgeries may not be a reliable surrogate for PaCO2 levels.

Keywords

Children;  Anesthesia;  Laparoscopy;  Mechanical ventilation;  Arterial carbon dioxide;  End tidal carbon dioxide

Resumo

Introdução

A manutenção da normocapnia durante a ventilação mecânica em crianças anestesiadas durante cirurgias laparoscópicas é altamente recomendada. Há um debate sobre o uso da capnografia (ETCO2) como monitor de tendência para avaliação dos níveis arteriais de dióxido de carbono (PaCO2). Analisamos a relação entre ETCO2 e PaCO2 com o tempo em cirurgias laparoscópicas pediátricas eletivas.

Métodos

Este estudo foi uma análise de coorte observacional prospectiva de 116 comparações pareadas entre PaCO2 e ETCO2 calculadas em 29 crianças (ASA I, 12–72 meses). Amostras de sangue arterial foram coletadas antes, 15 minutos e 30 minutos durante o pneumoperitônio e 1 minuto após a desinsuflação. O valor de ETCO2 foi registrado simultaneamente, enquanto o sangue arterial era retirado. A relação PaCO2–ETCO2 foi avaliada pelos coeficientes de correlação de Pearson e pelo método de concordância de Bland Altman.

Resultados

Das 116 comparações analisadas, foi registrada diferença PaCO2–ETCO2 além de 0 a ≤ 5 mmHg em 71 comparações (61,2%) com diferença negativa em 34 comparações (29,3%). Foi registrada correlação positiva significativa entre PaCO2 e ETCO2 antes (r = 0,617, p =  0,000) e aos 15 minutos (r = 0,582, p =  0,001), sem correlação significativa aos 30 minutos (r = 0,142, p =  0,461). , seja após deflação (r = 0,108, p =  0,577). Os gráficos de Bland-Altman mostraram concordância entre ETCO2 e PaCO2 antes da inflação com diferença média de PaCO2-ETCO2 0,14 ± 5,6 mmHg (limites de concordância de 95% -10,84–11,2, teste de regressão linear simples valor p 0,971), sem concordância aos 15 minutos ( 0,51 ± 7,15, -13,5–14,5, p = 0,000), 30 minutos. (2,62 ± 7,83, -12,73–17,97, p = 0,000), ou após deflação (1,81 ± 6,56, -10,93–14,55, p =  0,015).

Conclusão

O uso da capnografia como monitor de tendências em cirurgias laparoscópicas pediátricas pode não ser um substituto confiável para os níveis de PaCO2.

Palavras-chave

Crianças; Anestesia; Laparoscopia; Ventilação mecânica; Dióxido de carbono arterial; Fim da maré de dióxido de carbono

References

1. Merry AF, Cooper JB, Soyannwo O, Wilson IH, Eichhorn JH. International standards for a safe practice of anesthesia 2010. Canad J Anesth. 2010;57:1027–34.

2. Whitaker DK. Time for capnography – everywhere. Anaesthesia. 2011;66:544–9.

3. McCann ME, Soriano SG. Perioperative central nervous system injury in neonates. Br J Anaesth. 2012;109 Suppl.1:i60–7.

4. Ringer SK, Ohlerth S, Carrera I, et al. Effects of hypotension and/or hypocapnia during sevoflurane anesthesia on perfusion and metabolites in the developing brain of piglets – a blinded randomized study. Pediatr Anesth. 2016;26:909–18.

5. McCann ME, Schouten AN, Dobija N, et al. Infantile postoperative encephalopathy: perioperative factors as a cause for concern. Pediatrics. 2014;133:e751–7.

6. Nunn JF, Hill DW. Respiratory dead space and arterial to endtidal carbon dioxide tension difference in anesthetized man. J Applied Physiol. 1960;15:383–9.

7. Goonasekera C, Goodwin A, Wang Y, Goodman J, Deep A. Arterial and end-tidal carbon dioxide difference in pediatric intensive care. Indian J Crit Care Med. 2014;18:711–5.

8. Woodham V, Railton KL. End-tidal carbon dioxide monitoring during paediatric general anaesthesia. Anaesthesia. 2018;73:646–7.

9. Ickx B, Dolomie JO, Benalouch M, Melot C, Lingier P. Arterial to end-tidal carbon dioxide tension differences in infants and children. Anaesth Clin Res. 2015;6:2155–6148.

10. McSwain SD, Hamel DS, Smith PB, et al. End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respiratory Care. 2010;55:288–93.

11. Jayan N, Jacob JS, Mathew M. Anaesthesia for laparoscopic nephrectomy: Does end-tidal carbon dioxide measurement correlate with arterial carbon dioxide measurement? Indian J Anaesth. 2018;62:298–302.

12. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

13. Tanaka T, Satoh K, Torii Y, Suzuki M, Furutani H, Harioka T. Arterial to end-tidal carbon dioxide tension difference during laparoscopic colorectal surgery. Masui. 2006;55:988–91.

14. Seed RF, Shakespeare TF, Muldoon MJ. Carbon dioxide homeostasis during anaesthesia for laparoscopy. Anaesthesia. 1970;25:223–31.

15. Onodi C, Bühler PK, Thomas J, Schmitz A, Weiss M. Arterial to end-tidal carbon dioxide difference in children undergoing mechanical ventilation of the lungs during general anaesthesia. Anaesthesia. 2017;72:1357–64.

16. Yang JT, Erickson SL, Killien EY, Mills B, Lele AV, Vavilala MS. Agreement between arterial carbon dioxide levels with endtidal carbon dioxide levels and associated factors in children hospitalized with traumatic brain injury. JAMA Netw Open. 2019;2:e199448.

17. Klopfenstein CE, Schiffer E, Pastor CM, Beaussier M, Francis K, Soravia C, et al. Laparoscopic colon surgery: unreliability of end-tidal CO2 monitoring. Acta Anaesthiol Scand. 2008;52:700–7.

18. Xue Q, Wu X, Jin J, Yu B, Zheng M. Transcutaneous carbon dioxide monitoring accurately predicts arterial carbon dioxide partial pressure in patients undergoing prolonged laparoscopic surgery. Anesth Analg. 2010;111:417–20.

19. Yamanaka MK, Sue DY. Comparison of arterial-end tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92:832–5.

20. Burrows FA. Physiologic dead space, venous admixture, and the arterial to end-tidal carbon dioxide difference in infants and children undergoing cardiac surgery. Anesthesiology. 1989;70:219–25.

21. Liem MS, Kallewaard JW. de Smet AM, van Vroonhoven TJ. Does hypercarbia develop faster during laparoscopic herniorrhaphy than during laparoscopic cholecystectomy? Assessment with continuous blood gas monitoring. Anesth Analg. 1995;81:1243–9.

22. Nosovitch MA, Johnson JO, Tobias JD. Noninvasive intraoperative monitoring of carbon dioxide in children: end tidal versus transcutaneous techniques. Paediatr Anaesth. 2002;12:48–52.

23. May A, Humston C, Rice J, Nemastil CJ, Salvator A, Tobias J. Non-invasive carbon dioxide monitoring in patients with cystic fibrosis during general anesthesia: end-tidal versus transcutaneous techniques. J Anesth. 2020;34:66–71.

24. Lermuzeaux M, Meric H, Sauneuf B, et al. Superiority of transcutaneous CO2 over end-tidal CO2 measurement for monitoring respiratory failure in nonintubated patients: A pilot study. J Crit Care. 2016;31:150–6.

25. Gleich SJ, Wong AV, Handlogten KS, Thum DE, Nemergut ME. Major short-term complications of arterial cannulation for monitoring in children. Anesthesiology. 2021;134:26–34.


Submitted date:
08/31/2020

Accepted date:
07/28/2020

611fec16a9539573995d9844 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections