Role of Pv-aCO2 gradient and Pv-aCO2/Ca-vO2 ratio during cardiac surgery: a retrospective observational study
Papel do gradiente Pv-aCO2 e da relação Pv-aCO2/Ca-vO2 durante cirurgia cardíaca: um estudo observacional retrospectivo
Juan P. Bouchacourt; F. Javier Hurtado; Eduardo Kohn; Laura Illescas; Arnaldo Dubin; Juan A. Riva
Abstract
Introduction
Arterial lactate, mixed venous O2 saturation, venous minus arterial CO2 partial pressure (Pv-aCO2) and the ratio between this gradient and the arterial minus venous oxygen content (Pv-aCO2/Ca-vO2) were proposed as markers of tissue hypoperfusion and oxygenation. The main goals were to characterize the determinants of Pv-aCO2 and Pv-aCO2/Ca-vO2, and the interchangeability of the variables calculated from mixed and central venous samples.
Methods
35 cardiac surgery patients were included. Variables were measured or calculated: after anesthesia induction (T1), end of surgery (T2), and at 6-8 hours intervals after ICU admission (T3 and T4).
Results
Macrohemodynamics was characterized by increased cardiac index and low systemic vascular resistances after surgery (p < 0.05). Hemoglobin, arterial-pH, lactate, and systemic O2 metabolism showed significant changes during the study (p < 0.05). Pv-aCO2 remained high and without changes, Pv-aCO2/Ca-vO2 was also high and decreased at T4 (p < 0.05). A significant correlation was observed globally and at each time interval, between Pv-aCO2 or Pv-aCO2/Ca-vO2 with factors that may affect the CO2 hemoglobin dissociation. A multilevel linear regression model with Pv-aCO2 and Pv-aCO2/Ca-vO2 as outcome variables showed a significant association for Pv-aCO2 with SvO2, and BE (p < 0.05), while Pv-aCO2/Ca-vO2 was significantly associated with Hb, SvO2, and BE (p < 0.05) but not with cardiac output. Measurements and calculations from mixed and central venous blood were not interchangeable.
Conclusions
Pv-aCO2 and Pv-aCO2/Ca-vO2 could be influenced by different factors that affect the CO2 dissociation curve, these variables should be considered with caution in cardiac surgery patients. Finally, central venous and mixed values were not interchangeable.
Keywords
Resumo
Introdução
Lactato arterial, saturação venosa mista de O2, pressão parcial de CO2 venoso menos arterial (Pv-aCO2) e a relação entre esse gradiente e o conteúdo de oxigênio arterial menos venoso (Pv-aCO2/Ca-vO2) foram propostos como marcadores de hipoperfusão e oxigenação tecidual. Os principais objetivos foram caracterizar os determinantes de Pv-aCO2 e Pv-aCO2/Ca-vO2, e a intercambialidade das variáveis calculadas a partir de amostras venosas mistas e centrais.
Métodos
Foram incluídos 35 pacientes de cirurgia cardíaca. As variáveis foram medidas ou calculadas: após a indução anestésica (T1), final da cirurgia (T2) e em intervalos de 6 a 8 horas após a admissão na UTI (T3 e T4).
Resultados
A macrohemodinâmica foi caracterizada por aumento do índice cardíaco e baixas resistências vasculares sistêmicas após a cirurgia (p < 0,05). A hemoglobina, o pH arterial, o lactato e o metabolismo sistêmico do O2 apresentaram alterações significativas durante o estudo (p < 0,05). A Pv-aCO2 permaneceu elevada e sem alterações, a Pv-aCO2/Ca-vO2 também esteve elevada e diminuiu em T4 (p < 0,05). Uma correlação significativa foi observada globalmente e em cada intervalo de tempo, entre Pv-aCO2 ou Pv-aCO2/Ca-vO2 com fatores que podem afetar a dissociação da hemoglobina CO2. Um modelo de regressão linear multinível com Pv-aCO2 e Pv-aCO2/Ca-vO2 como variáveis de desfecho mostrou uma associação significativa para Pv-aCO2 com SvO2 e BE (p < 0,05), enquanto Pv-aCO2/Ca-vO2 foi significativamente associado com Hb, SvO2 e BE (p < 0,05), mas não com débito cardíaco. As medições e cálculos de sangue venoso central e misto não eram intercambiáveis.
Conclusão
Pv-aCO2 e Pv-aCO2/Ca-vO2 podem ser influenciados por diferentes fatores que afetam a curva de dissociação de CO2, essas variáveis devem ser consideradas com cautela em pacientes de cirurgia cardíaca. Finalmente, os valores venosos centrais e mistos não eram intercambiáveis.
Palavras-chave
References
1. Pölönen P, Ruokonen E, Hippeläinen M, et al. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–9. Brazilian Journal of Anesthesiology 2023;73(5):611–619
2. Tripodaki ES, Tasoulis A, Koliopoulou A, et al. Microcirculation and macrocirculation in cardiac surgical patients. Crit Care Res Pract. 2012;2012:654381.
3. Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13:223–9.
4. Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2014;42:2118–25.
5. Vallet B, Teboul JL, Cain S, et al. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.
6. Mallat J. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med. 2016;5:47.
7. Lamsfus-Prieto J, de Castro-Fernández R, Hernández-García AM, et al. Valor pronóstico de los parámetros gasométricos del dióxido de carbono en pacientes con sepsis. Una revisión bibliográfica. Rev Esp Anestesiol Reanim. 2016;63:220–30.
8. Mesquida J, Saludes P, Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015;19:126.
9. Ducey JP, Lamiell JM, Gueller GE. Arterial-venous carbon dioxide tension difference during severe hemorrhage and resuscitation. Crit Care Med. 1992;20:518–22.
10. Dubin A, Ferrara G, Kanoore Edul VS, et al. Venoarterial PCO2- to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study. Ann Intensive Care. 2017;7:65.
11. Riva JA, Bouchacourt JP, Kohn WE, et al. Las tendencias en el tiempo de las saturaciones de oxígeno en la vena cava superior y la arteria pulmonar no son equivalentes en cirugía cardiaca. Rev Esp Anestesiol Reanim. 2015;62:140–4.
12. Chawla LS, Zia H, Gutierrez G, et al. Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004;126:1891–6.
13. Gutierrez G, Comignani P, Huespe L, et al. Central venous to mixed venous blood oxygen and lactate gradients are associated with outcome in critically ill patients. Intensive Care Med. 2008;34:1662–8.
14. Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol. 1988;65:473–7.
15. Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25:536–46.
16. Fischer GW, Levin MA. Vasoplegia during cardiac surgery: current concepts and management. Semin Thorac Cardiovasc Surg. 2010;22:140–4.
17. Minton J, Sidebotham DA. Hyperlactatemia and cardiac surgery. J Extra Corpor Technol. 2017;49:7–15.
18. Naik R, George G, Karuppiah S, et al. Hyperlactatemia in patients undergoing adult cardiac surgery under cardiopulmonary bypass: causative factors and its effect on surgical outcome. Ann Card Anaesth. 2016;19:668–75.
19. Haanschoten MC, Kreeftenberg HG, Arthur Bouwman R, et al. Use of postoperative peak arterial lactate level to predict outcome after cardiac surgery. J Cardiothorac Vasc Anesth. 2017;31:45–53.
20. Heinze H, Paarmann H, Heringlake M, et al. Measurement of central and mixed venous-to-arterial carbon dioxide differences in cardiac surgery patients. Appl Cardiopulm Pathophysiol. 2011;15:29–37.
21. Morel J, Grand N, Axiotis G, et al. High veno-arterial carbon dioxide gradient is not predictive of worst outcome after an elective cardiac surgery: a retrospective cohort study. J Clin Monit Comput. 2016;30:783–9.
22. Abou-Arab O, Braik R, Huette P, et al. The ratios of central venous to arterial carbon dioxide content and tension to arteriovenous oxygen content are not associated with overall anaerobic metabolism in postoperative cardiac surgery patients. PLoS One. 2018;13:1–11.
23. Dubin A, Estenssoro E, Murias G, et al. Intramucosal-arterial PCO2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J Trauma. 2004;57:1211–7.
24. Jakob SM, Kosonen P, Ruokonen E, et al. The haldane effect – an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 1999;83:740–6.
25. Ferrara G, Edul VSK, Canales HS, et al. Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock. Intensive Care Med Exp. 2017;5:24.
26. Dubin A, Pozo MO, Kanoore Edul VS, et al. Poor agreement in the calculation of venoarterial PCO2 to arteriovenous O2 content difference ratio using central and mixed venous blood samples in septic patients. J Crit Care. 2018;48:445–50.
27. Cavaliere F. Impaired carbon dioxide transport during and after cardiopulmonary bypass. Perfusion. 2000;15:433–9.
28. Cavaliere F, Martinelli L, Guarneri S, et al. Arterial-venous PCO2 gradient in early postoperative hours following myocardial revascularization. J Cardiovasc Surg (Torino). 1996;37: 499–503.
29. Carrel T, Englberger L, Mohacsi P, et al. Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance. J Card Surg. 2000;15:347–53.
30. Williams J, McLean A, Ahari J, et al. Decreases in mixed venous blood O2 saturation in cardiac surgery patients following extubation. J Intensive Care Med. 2020;35:264–9.