Sildenafil in endotoxin-induced pulmonary hypertension: an experimental study
Sildenafil na hipertensão pulmonar induzida por endotoxina: um estudo experimental
Daniella Aparecida Godoi Kemper, Denise Aya Otsuki, Débora Rothstein Ramos Maia, Cristina de Oliveira Mossoco, Rogério Anderson Marcasso, Ligia Cristina Câmara Cunha, José Otávio Costa Auler Jr., Denise Tabacchi Fantoni
Abstract
Background
Sepsis and septic shock still represent great challenges in critical care medicine. Sildenafil has been largely used in the treatment of pulmonary arterial hypertension, but its effects in sepsis are unknown. The aim of this study was to investigate the hypothesis that sildenafil can attenuate endotoxin-induced pulmonary hypertension in a porcine model of endotoxemia.
Method
Twenty pigs were randomly assigned to Control group (n = 10), which received saline solution; or to Sildenafil group (n = 10), which received sildenafil orally (100 mg). After 30 minutes, both groups were submitted to endotoxemia with intravenous bacterial lipopolysaccharide endotoxin (LPS) infusion (4 µg.kg-1.h-1) for 180 minutes. We evaluated hemodynamic and oxygenation functions, and also lung histology and plasma cytokine (TNFα, IL-1β, IL6 and IL10) and troponin I response.
Results
Significant hemodynamic alterations were observed after 30 minutes of LPS continuous infusion, mainly in pulmonary arterial pressure (from Baseline 19 ± 2 mmHg to LPS30 52 ± 4 mmHg, p < 0.05). There was also a significant decrease in PaO2/FiO2 (from Baseline 411 ± 29 to LPS180 334 ± 49, p < 0.05). Pulmonary arterial pressure was significantly lower in the Sildenafil group (35 ± 4 mmHg at LPS30, p < 0.05). The Sildenafil group also presented lower values of systemic arterial pressure. Sildenafil maintained oxygenation with higher PaO2/FiO2 and lower oxygen extraction rate than Control group but had no effect on intrapulmonary shunt. All cytokines and troponin increased after LPS infusion in both groups similarly.
Conclusion
Sildenafil attenuated endotoxin-induced pulmonary hypertension preserving the correct heart function without improving lung lesions or inflammation.
Keywords
Resumo
Introdução
A sepse e o choque séptico ainda representam grandes desafios na medicina intensiva. O sildenafil tem sido amplamente utilizado no tratamento da hipertensão arterial pulmonar, mas seus efeitos na sepse são desconhecidos. O objetivo deste estudo foi investigar a hipótese de que o sildenafil pode atenuar a hipertensão pulmonar induzida por endotoxina em um modelo suíno de endotoxemia.
Métodos
Vinte porcos foram aleatoriamente designados para o grupo Controle (n = 10), que receberam solução salina; ou ao grupo Sildenafil (n = 10), que recebeu sildenafil via oral (100 mg). Após 30 minutos, ambos os grupos foram submetidos à endotoxemia com infusão intravenosa de endotoxina lipopolissacarídica bacteriana (LPS) (4 µg.kg-1.h-1) por 180 minutos. Avaliamos funções hemodinâmicas e de oxigenação, além de histologia pulmonar e resposta plasmática de citocinas (TNFα, IL-1β, IL6 e IL10) e troponina I.
Resultados
Alterações hemodinâmicas significativas foram observadas após 30 minutos de infusão contínua de LPS, principalmente na pressão arterial pulmonar (da linha de base 19 ± 2 mmHg para LPS30 52 ± 4 mmHg, p < 0,05). Houve também uma diminuição significativa na PaO2/FiO2 (da linha de base 411 ± 29 para LPS180 334 ± 49, p < 0,05). A pressão arterial pulmonar foi significativamente menor no grupo Sildenafil (35 ± 4 mmHg no LPS30, p < 0,05). O grupo Sildenafil também apresentou valores mais baixos de pressão arterial sistêmica. Sildenafil manteve a oxigenação com maior PaO2/FiO2 e menor taxa de extração de oxigênio do que o grupo controle, mas não teve efeito sobre o shunt intrapulmonar. Todas as citocinas e troponina aumentaram após a infusão de LPS em ambos os grupos de forma semelhante.
Conclusão
Sildenafil atenuou a hipertensão pulmonar induzida por endotoxina preservando a função cardíaca correta sem melhorar as lesões pulmonares ou a inflamação.
Palavras-chave
References
1. Singer M, Deutschman CS, Seymour CW, et al. The Thrid International Consensus Definitions for Sepsis and Septic Shock (Sepsis -3). JAMA. 2016:315801---10.
2. Sibbald WJ, Paterson NA, Holliday RL, et al. Pulmonary hypertension in sepsis: measurement by the pulmonary arterial diastolic-pulmonary wedge pressure gradient and the influence of passive and active factors. Chest. 1978;73:583---91.
3. Chan CM, Klinger JR. The right ventricle in sepsis. Clin Chest Med. 2008;29:661---76.
4. Clavijo LC, Carter MB, Matheson PJ, et al. Platelet-activating factor and bacteremia-induced pulmonary hypertension. J Surg Res. 2000;88:173---80.
5. Kleinsasser A, Loeckinger A, Hoermann C, et al. Sildenafil modulates hemodynamics and pulmonary gas exchange. Am J Respir Crit Care Med. 2001;163:339---43.
6. Raja SG, Danton MD, MacArthur KJ, et al. Treatment of pulmonary arterial hypertension with sildenafil: from pathophysiology to clinical evidence. J Cardiothorac Vasc Anesth. 2006;20:722---35.
7. Santi D, Giannetta E, Isidori AM, et al. Therapy of endocrine disease. Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a metaanalysis. Eur J Endocrinol. 2015;172:R103---14.
8. Venneri MA, Giannetta E, Panio G, et al. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice. PLoS One. 2015;10:e0126580.
9. Kloner RA. Novel phosphodiesterase type 5 inhibitors: assessing hemodynamic effects and safety parameters. Clin Cardiol. 2004;27:I20---5.
10. Bhatia S, Frantz RP, Severson CJ, et al. Immediate and long-term hemodynamic and clinical effects of sildenafil in patients with pulmonary arterial hypertension receiving vasodilator therapy. Mayo Clin Proc. 2003;78:1207---13.
11. Krebs J, Kolz A, Tsagogiorgas C, et al. Effects of lipopolysaccharide-induced inflammation on initial lung fibrosis during open-lung mechanical ventilation in rats. Respir Physiol Neurobiol. 2015;212---214:25---32.
12. Cadirci E, Halici Z, Odabasoglu F, et al. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol. 2011;166:374---84.
13. Schmidhammer R, Wassermann E, Germann P, et al. Infusion of increasing doses of endotoxin induces progressive acute lung injury but prevents early pulmonary hypertension in pigs. Shock. 2006;25:389---94.
14. Lipcsey M, Larsson A, Eriksson MB, et al. Effect of the administration rate on the biological responses to a fixed dose of endotoxin in the anesthetized pig. Shock. 2008;29:173---80.
15. Schaefer CF, Biber B, Brackett DJ, et al. Choice of anesthetic alters the circulatory shock pattern as gauged by conscious rat endotoxemia. Acta Anaesthesiol Scand. 1987;31:550---6.
16. Chew MS, Hawthorne WJ, Bendall J, et al. No beneficial effects of levosimendan in acute porcine endotoxaemia. Acta Anaesthesiol Scand. 2011;55:851---61.
17. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553---64.
18. Wang HM, Bodenstein M, Markstaller K. Overview of the pathology of three widely used animal models of acute lung injury. Eur Surg Res. 2008;40:305---16.
19. Griffee MJ, Merkel MJ, Wei KS. The role of echocardiography in hemodynamic assessment of septic shock. Crit Care Clin. 2010;26:365---82.
20. Furian T, Aguiar C, Prado K, et al. Ventricular dysfunction and dilation in severe sepsis and septic shock:relation to endothelial function and mortality. J Crit Care. 2012;27, 319.e9---15.
21. Orde SR, Pulido JN, Masaki M, et al. Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care. 2014;18:R149.
22. Harmankaya A, Akilli H, Gul M, et al. Assessment ofright ventricular functions in patients with sepsis, severe sepsis and septic shock and its prognostic importance: a tissue Doppler study. J Crit Care. 2013;28, 1111.e7---e11.
23. Haase E, Bigam DL, Cravetchi O, et al. Dose response of intravenous sildenafil on systemic and regional hemodynamics in hypoxic neonatal piglets. Shock. 2006;26:99---106.
24. Ryhammer PK, Shekerdemian LS, Penny DJ, et al. Effect of intravenous sildenafil on pulmonary hemodynamics and gas exchange in the presence and absence of acute lung injury in piglets. Pediatr Res. 2006;59:762---6.
25. Ghofrani HA, Wiedemann R, Rose F, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet. 2002;360:895---900.
26. Roy AK, McCullagh BN, Segurado R, et al. Detection of high-sensitivity troponin in outpatients with stable pulmonary hypertension identifies a subgroup at higher risk of adverse outcomes. J Card Fail. 2014;20:31---7.
27. Bajwa EK, Boyce PD, Januzzi JL, et al. Biomarker evidence of myocardial cell injury is associated with mortality in acute respiratory distress syndrome. Crit Care Med. 2007;35:2484---90.
28. Hassan MA, Ketat AF. Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol. 2005;5:10.
29. Kiss T, Kovacs K, Komocsi A, et al. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt. PLoS One. 2014;9:e104890.
30. Lagente V, Naline E, Guenon I, et al. A nitric oxide-releasing salbutamol elicits potent relaxant and anti-inflammatory activities. J Pharmacol Exp Ther. 2004;310:367---75.