Using the perfusion index to predict changes in the depth of anesthesia in children compared with the A-line Autoregression Index: an observational study
Usando o índice de perfusão para prever mudanças na profundidade da anestesia em crianças em comparação com o índice de autorregressão da linha A: um estudo observacional
Hala Saad Abdel-Ghaffar, Amani Hassan Abdel-Wahab, Mohammed Mahmoud Roushdy
Abstract
Background
We investigated the performance of the Perfusion Index (PI) derived from pulse oximetry waveform as a tool for assessment of anesthetic depth in comparison with A-line Autoregression Index (AAI) derived from analysis of Middle-Latency Auditory Evoked Potentials (MLAEP) waveform integrated by aepEXplus monitor in children receiving sevoflurane anesthesia for tonsillectomy.
Methods
Forty-one patients (4–12 years old) were included in this study. The PI and AAI were recorded simultaneously every minute during different stages of anesthesia delivery. The statistical tests included descriptive analysis, significance tests, correlation tests, and Receiver Operating Characteristic (ROC) curve. The AAI served as a reference.
Results
The PI significantly decreased during light anesthesia and recovery, and significantly increased during deeper planes of anesthesia, with an inverse mirror-image relationship with the AAI. A negative correlation of low to moderate degree was detected between PI and AAI during the study (p > 0.05), that reached a statistical significance at the 5th minute during sevoflurane mask induction (r = -0.457, p = 0.008). ROC analysis at an AAI < 25 extracted the best cut-off value for PI before intubation as 1.48 (AUC = 0.698 [0.537–0.859], 94.4% sensitivity, 44.5% specificity) and at 10-minute intraoperatively as 2.4 (AUC = 0.537 [0.354- 0.721], 91.7% sensitivity, 31% specificity). During recovery, at an AAI ≥ 50, the best cutoff was 1.82, (AUC = 0.661 [0.46–0.863], 100% sensitivity and 50% specificity) 2-minutes before spontaneous eye opening.
Conclusions
Compared with the AAI, the PI can track changes in depth of anesthesia in pediatric patients undergoing tonsillectomy under sevoflurane anesthesia.
Keywords
Resumo
Introdução
Nós investigamos o desempenho do Índice de Perfusão (IP) derivado da forma de onda da oximetria de pulso como uma ferramenta para avaliação da profundidade anestésica em comparação com o Índice de Autorregressão de Linha A (AAI) derivado da análise da forma de onda dos Potenciais Evocados Auditivos de Média Latência (MLAEP) integrada pelo monitor aepEXplus em crianças recebendo anestesia com sevoflurano para tonsilectomia.
Métodos
Quarenta e um pacientes (4 a 12 anos) foram incluídos neste estudo. O IP e o ITB foram registrados simultaneamente a cada minuto durante os diferentes estágios da administração da anestesia. Os testes estatísticos incluíram análise descritiva, testes de significância, testes de correlação e curva Receiver Operating Characteristic (ROC). A AAI serviu de referência.
Resultados
O IP diminuiu significativamente durante a anestesia leve e a recuperação, e aumentou significativamente durante os planos mais profundos de anestesia, com uma relação inversa de imagem espelhada com o AAI. Foi detectada correlação negativa de grau baixo a moderado entre IP e ITB durante o estudo (p > 0,05), que alcançou significância estatística no 5º minuto durante a indução com máscara de sevoflurano (r = -0,457, p = 0,008). A análise ROC com um ITB < 25 extraiu o melhor valor de corte para IP antes da intubação como 1,48 (AUC = 0,698 [0,537–0,859], sensibilidade de 94,4%, especificidade de 44,5%) e no intraoperatório de 10 minutos como 2,4 (AUC = 0,537 [0,354-0,721], sensibilidade de 91,7%, especificidade de 31%). Durante a recuperação, com um ITB ≥ 50, o melhor ponto de corte foi 1,82 (AUC = 0,661 [0,46–0,863], 100% de sensibilidade e 50% de especificidade) 2 minutos antes da abertura espontânea dos olhos.
Conclusão
Comparado com o AAI, o IP pode rastrear alterações na profundidade da anestesia em pacientes pediátricos submetidos a tonsilectomia sob anestesia com sevoflurano.
Palavras-chave
References
1. Davidson AJ. Monitoring the anaesthetic depth in children: an update. Curr Opin Anaesthesiol. 2007;20:236–43.
2. Weber F, Pohl F, Hollnberger H, et al. Impact of the Narcotrend Index on propofol consumption and emergence times during total intravenous anaesthesia with propofol and remifentanil in children: a clinical utility study. Eur J Anaesthesiol. 2005;22:741–7.
3. Weber F, Seidl M, Bein T. Impact of the AEP-Monitor/2- derived composite auditory-evoked potential index on propofol consumption and emergence times during total intravenous anaesthesia with propofol and remifentanil in children. Acta Anaesthesiol Scand. 2005;49:277–83.
4. Fletcher JE, Hinn AR, Heard CM, et al. The effects of isoflurane and desflurane titrated to a bispectral index of 60 on the cortical somatosensory evoked potential during pediatric scoliosis surgery. Anesth Analg. 2005;100:1797–803.
5. Davies FW, Mantzaridis H, Kenny GN, et al. Middle latency auditory evoked potentials during repeated transitions from consciousness to unconsciousness. Anaesthesia. 1996;51:107–13.
6. Daunderer M, Feuerecker MS, Scheller B, et al. Midlatency auditory evoked potentials in children: effect of age and general anaesthesia. Br J Anaesth. 2007;99:837–44.
7. McGee T, Kraus N. Auditory development reflected by middle latency response. Ear Hear. 1996;17:419–29.
8. Struys MM, Vereecke H, Moerman A, et al. Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil. Anesthesiology. 2003;99:802–12.
9. Rinehardt EK, Sivarajan M. Costs and wastes in anesthesia care. Curr Opin Anaesthesiol. 2012;25:221–5.
10. Ezri T, Steinmetz A, Geva D, et al. Skin vasomotor reflex as a measure of depth of anesthesia. Anesthesiology. 1998;89:1281–2.
11. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28:R1–39.
12. Korhonen I, Yli-Hankala A. Photoplethysmography and nociception. Acta Anesthesiol Scand. 2009;53:975–85.
13. Krishnamohan A, Siriwardana V, Skowno JJ. Using a pulse oximeter to determine clinical depth of anesthesia-investigation of the utility of the perfusion index. Pediatr Anesth. 2016;26:1106–11.
14. Seitsonen ERJ, Korhonen IKJ, van Gils MJ, et al. EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anesthesiol Scand. 2005;49:284–92.
15. Enekvist B, Johansson A. Pulse perfusion value predicts eye opening after sevoflurane anaesthesia: an explorative study. J Clin Monit Comput Springer Netherlands. 2015;29:461–5.
16. Skowno JJ. Perfusion index changes during emergence from anaesthesia in children. Anaesth Intensive Care. 2013;41:556–7.
17. Liu P-P, Wu C, Wu J-Z, et al. The prediction probabilities for emergence from sevoflurane anesthesia in children: A comparison of the perfusion index and the bispectral index. Pediatr Anesth. 2018;28:281–6.
18. Cheung YM, Scoones GP, Stolker RJ, et al. Monitoring depth of hypnosis: mid-latency auditory evoked potentials derived aepex in children receiving desflurane-remifentanil anesthesia. Anesth Analg. 2020;130:194–200.
19. Fahy BG, Chau DF. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111–7.
20. Granelli DW, Ostman-Smith I. Noninvasive peripheral perfusion index as a possible tool for screening for critical left heart obstruction. Acta Paediatr. 2007;96:1455–9.
Submitted date:
06/14/2020
Accepted date:
04/25/2021