Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1016/j.bjane.2021.04.007
Brazilian Journal of Anesthesiology
Original Investigation

Location of motor branches of tibialis posterior muscle and its relation in treatment of spastic equinovarus foot: a cadaveric study

Localização dos ramos motores do músculo tibial posterior e sua relação no tratamento do pé equinovaro espástico: estudo em cadáver

Zheng-Yu Gao, Lei Li, Jian-Fang Song, Wei Chen, Peng Ma, Ji-Xia Wu

Downloads: 0
Views: 874

Abstract

Background and objectives
Nerve block or neurolysis is an important approach in the treatment of spastic equinovarus foot. To illustrate the accurate location of the nerve branch to the tibialis posterior muscle (TP) in clinical practice, 21 adult cadavers were dissected and 14 complete both lower limb specimens were obtained. A total of 28 lower limbs were included.

Methods
We measured the length of the motor branch nerve (LM) of the tibialis posterior muscle, the length of the fibula (LF), the vertical distance (D1) from the midpoint of LM to the fibula tip as well as the horizontal distance (D2) from the midpoint of LM to the inner edge of the fibula.

Results
The LM was higher (35.74 ± 7.28 mm) in male than in female (30.40 ± 6.88 mm) specimens but there was no significant correlation between LM and gender (p >  0.05). Additionally, among male specimens, the LM on the right side was longer than that on the left (p ≤  0.05) while among female specimens, the D1 on the left side was longer than that on the right (p ≤  0.05). The LF in male specimen was significantly longer than that in female (p ≤  0.05). The midpoint of the nerve to the motor branch of the tibialis posterior muscle was about 50 mm distal to the fibular head and 10 mm at the inner edge of the fibula.

Conclusion
Using this coordinate, the midpoint of the nerve branch to the TP could be accurately located.

Keywords

Tibial nerve,  Posterior tibial tendon dysfunction,  TARP syndrome

Resumo

Justificativa e objetivos: O bloqueio do nervo ou neurólise é uma abordagem importante no tratamento do pé equinovaro espástico. Para ilustrar a localização precisa do ramo nervoso para o músculo tibial posterior (TP) na prática clínica, 21 cadáveres adultos foram dissecados e 14 espécimes completos de ambos os membros inferiores foram obtidos. Um total de 28 membros inferiores foram incluídos. Métodos: Medimos o comprimento do nervo do ramo motor (RM) do músculo tibial posterior, o comprimento da fíbula (CF), a distância vertical (D1) do ponto médio do RM até a ponta da fíbula, bem como a distância horizontal (D2) do ponto médio de RM até a borda interna da fíbula. Resultados: O RM foi maior (35,74 ± 7,28 mm) no sexo masculino do que no feminino (30,40 ± 6,88 mm), mas não houve correlação significativa entre o RM e o sexo (p > 0,05). Além disso, entre os machos, o LM do lado direito foi maior que o esquerdo (p ≤ 0,05) enquanto entre os espécimes femininos, o D1 do lado esquerdo foi maior que o do direito (p ≤ 0,05). O CF no espécime masculino foi significativamente maior do que no feminino (p ≤ 0,05). O ponto médio do nervo para o ramo motor do músculo tibial posterior foi cerca de 50 mm distal à cabeça da fíbula e 10 mm na borda interna da fíbula. Conclusão: Utilizando esta coordenada, o ponto médio do ramo nervoso para o TP pôde ser localizado com precisão.

Palavras-chave

Nervo tibial; Disfunção do tendão tibial posterior; Síndrome TARP

References

1 C. Verdie, J.C. Daviet, M.J. Borie, et al. Epidemiology of pes varus and/or equinus one year after a first cerebral hemisphere stroke: apropos of a cohort of 86 patients Ann Readapt Med Phys, 47 (2004), pp. 81-86

2 J. Pelissier, E. Viel, M. Enjalbert, et al. Chemical neurolysis using alcohol (alcoholization) in the treatment of spasticity in the hemiplegic Cah Anesthesiol, 41 (1993), pp. 139-143

3 T. Deltombe, T. Gustin Selective tibial neurotomy in the treatment of spastic equinovarus foot in hemiplegic patients: a 2-year longitudinal follow-up of 30 cases Arch Phys Med Rehabil, 91 (2010), pp. 1025-1030

4 A. Picelli, E. Chemello, E. Verzini, et al. Anatomical landmarks for tibial nerve motor branches in the management of spastic equinovarus foot after stroke: An ultrasonographic study J Rehabil Med, 51 (2019), pp. 380-384

5 M. Sindou, P. Mertens Selective neurotomy of the tibial nerve for treatment of the spastic foot Neurosurgery, 23 (1988), pp. 738-744

6 T. Deltombe, C. Detrembleur, P. Hanson, et al. Selective tibial neurotomy in the treatment of spastic equinovarus foot: a 2-year follow-up of three cases Am J Phys Med Rehabil, 85 (2006), pp. 82-88

7 M. Baroncini, H. Baiz, G. Wavreille, et al. Anatomical bases of tibial neurotomy for treatment of spastic foot Surg Radiol Anat, 30 (2008), pp. 503-508

8 J.C. Otis, T. Gage Function of the posterior tibial tendon muscle Foot and ankle clinics, 6 (2001), pp. 1-14

9 T.L. Wickiewicz, R.R. Roy, P.L. Powell, et al. Muscle architecture of the human lower limb Clin Orthop Relat Res (1983), pp. 275-283

10 S.H. Jang, S.H. Ahn, S.M. Park, et al. Alcohol neurolysis of tibial nerve motor branches to the gastrocnemius muscle to treat ankle spasticity in patients with hemiplegic stroke Arch Phys Med Rehabil, 85 (2004), pp. 506-508

11 V.A. Sheverdin, M.S. Hur, S.Y. Won, et al. Extra- and intramuscular nerves distributions of the triceps surae muscle as a basis for muscle resection and botulinum toxin injections Surg Radiol Anat, 31 (2009), pp. 615-621

12 W.K. Yoo, I.H. Chung, C.I. Park Anatomic motor point localization for the treatment of gastrocnemius muscle spasticity Yonsei Med J, 43 (2002), pp. 627-630

13 P. Decq, P. Filipetti, A. Cubillos, et al. Soleus neurotomy for treatment of the spastic equinus foot. Groupe d’Evaluation et de Traitement de la Spasticite et de la Dystonie Neurosurgery, 47 (2000), pp. 1154-1160 discussion 60–61

14 N. Apaydin, M. Loukas, S. Kendir, et al. The precise localization of distal motor branches of the tibial nerve in the deep posterior compartment of the leg Surg Radiol Anat, 30 (2008), pp. 291-295

15 K.D. Bodily, R.J. Spinner Restoration of motor function of the deep fibular (peroneal) nerve by direct nerve transfer of branches from the tibial nerve: an anatomical study Clin Anat, 17 (2004), pp. 201-205

16 M. Baroncini, H. Baïz, G. Wavreille, et al. Anatomical bases of tibial neurotomy for treatment of spastic foot Surg Radiol Anat, 30 (2008), pp. 503-508

17 A. Esquenazi, S. Lee, N. Mayer, et al. Patient Registry of Spasticity Care World: Data Analysis Based on Physician Experience Am J Phys Med Rehabil, 96 (2017), pp. 881-888

18 S. Akturk, R. Buyukavci, Y. Ersoy Functional outcomes following ultrasound-guided botulinum toxin type A injections to reduce spastic equinovarus in adult post-stroke patients Toxicon, 146 (2018), pp. 95-98

19 Y. Kirazli, A.Y. On, B. Kismali, et al. Comparison of phenol block and botulinus toxin type A in the treatment of spastic foot after stroke: a randomized, double-blind trial Am J Phys Med Rehabil, 77 (1998), pp. 510-515

20 B. Mohammadi, S.A. Balouch, R. Dengler, et al. Long-term treatment of spasticity with botulinum toxin type A: an analysis of 1221 treatments in 137 patients Neurol Res, 32 (2010), pp. 309-313

21 H. Kocabas, A. Salli, A.H. Demir, et al. Comparison of phenol and alcohol neurolysis of tibial nerve motor branches to the gastrocnemius muscle for treatment of spastic foot after stroke: a randomized controlled pilot study Eur J Phys Rehabil Med, 46 (2010), pp. 5-10

22 N. Apaydin, M. Loukas, S. Kendir, et al. The precise localization of distal motor branches of the tibial nerve in the deep posterior compartment of the leg Surg Radiol Anat, 30 (2008), pp. 291-295

23 T. Deltombe, J.F. De Wispelaere, T. Gustin, et al. Selective blocks of the motor nerve branches to the soleus and tibialis posterior muscles in the management of the spastic equinovarus foot Arch Phys Med Rehabil, 85 (2004), pp. 54-58

24 H. Sook Kim, J. Hye Hwang, P.K. Lee, et al. Localization of the motor nerve branches and motor points of the triceps surae muscles in korean cadavers Am J Phys Med Rehabil, 81 (2002), pp. 765-769

60982a11a95395647a55c852 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections