Analgesic effect of magnesium sulfate during total intravenous anesthesia: randomized clinical study
Efeito analgésico do sulfato de magnésio durante anestesia venosa total: estudo clínico randomizado.
Sebastião E. Silva Filho, Carlson S. Sandes, Joaquim E. Vieira, Ismar L. Cavalcanti
Abstract
Introduction and objective
: Opioids have usually been used as intraoperative analgesic components, regardless of the many adverse effects they are associated with, such as nausea, vomiting, respiratory depression, and hyperalgesia. Several approaches have been investigated to reduce doses used, and magnesium sulfate has been shown to be a valuable analgesic adjunct. The main objective of the present trial was to evaluate the effectiveness of magnesium sulfate as the chief intraoperative analgesic, and the secondary objectives were to assess propofol consumption, postoperative analgesia, and intraoperative hemodynamic stability.
Methods
In this prospective, double-blind trial, 50 patients scheduled to undergo post-bariatric abdominoplasty under general intravenous anesthesia were divided into two groups, to receive remifentanil or magnesium sulfate as intraoperative analgesic. Fentanyl 1 µg.kg-1 was the rescue analgesic.
Results
Among the patients in the group receiving Magnesium Sulfate (MSG), 64% did not need supplemental analgesia and none of the patients in the Remifentanil Group (RG) required fentanyl. MSG patients showed propofol consumption 36.6% higher (guided by the Bispectral Index – BIS). MSG patients consumed significantly less ephedrine (mean ± SD) than RG patients, respectively 1.52 ± 4.38 mg and 10 ± 10.39 mg,p < 0.001. Mean values of blood concentrations of magnesium were comparable to values previously described in the literature.
Conclusion
Magnesium sulfate is a safe and effective option for intraoperative analgesia, when avoiding or decreasing opioid use is required.
Keywords
Resumo
Justificativa e objetivo: os opioides são tradicionalmente o componente analgésico intraoperatório, apesar dos muitos efeitos adversos que apresentam, como náuseas, vômitos, depressão respiratória e hiperalgesia. Várias alternativas têm sido exploradas para reduzir as doses empregadas, e o sulfato de magnésio se mostrou um adjunto analgésico importante. O objetivo principal deste ensaio foi avaliar a efetividade do sulfato de magnésio como analgésico intraoperatório principal e os objetivos secundários foram avaliar consumo de propofol, analgesia pós-operatória e estabilidade hemodinâmica intraoperatória. Métodos: neste ensaio prospectivo e duplo-encoberto, 50 pacientes programados para serem submetidos a dermolipectomia pós-bariátrica sob anestesia geral intravenosa foram distribuídos em dois grupos, para receberem remifentanil ou sulfato de magnésio como analgésico intraoperatório. Fentanil 1 µg/kg foi o analgésico de resgate. Resultados: entre os pacientes do grupo que recebeu sulfato de magnésio, 64% não necessitaram analgesia suplementar; nenhum dos pacientes no grupo remifentanil necessitou receber fentanil. Os pacientes que receberam sulfato de magnésio consumiram 36,6% mais propofol (guiado pelo índice bispectral – BIS). Os pacientes do grupo sulfato de magnésio consumiram significativamente menos efedrina (média e DP, 1,52 mg ± 4,38 mg contra 10 mg ± 10,39 mg, no GR p < 0,001). As concentrações sanguíneas médias de magnésio (Mg) seguiram o padrão encontrado na literatura. Conclusão: sulfato de magnésio é uma opção segura e eficaz para analgesia intraoperatória quando se deseja evitar ou diminuir o uso de opioides. Palavras chave: sulfato de magnésio, analgesia, dor pós-operatória.
Palavras-chave
References
1 J.W. Dunde, J. Moore Alterations in response to somatic pain associated with anaesthesia Br J Anaesth, 32 (1960), pp. 453-459
2 TH Stanley The fentanyl story J Pain, 15 (2014), pp. 1215-1226
3 A.M. Trescot, S. Datta, M. Lee, et al. Opioid pharmacology Pain Physician, 11 (2008), pp. S133-53
4 M. Lee, S. Silverman, H. Hansen, et al. A comprehensive review of opioid-induced hyperalgesia Pain Physician, 14 (2011), pp. 145-161
5 B. Guignard, A.E. Bossard, C. Coste, et al. Acute opioide tolerance Anesthesiology, 93 (2000), pp. 409-417
6 I. Kissin, C.A. Bright, E.L. Bradley Acute tolerance to continuously infused alfentanil: The role of cholecystokinin and N-methyl-D-aspartate-nitric oxide systems Anesth Analg, 91 (2000), pp. 110-116
7 M Zhao, DT Joo Enhancement of spinal N-methyl-d-aspartate receptor function by remifentanil action at δ-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance Anesthesiology, 109 (2008), pp. 308-317
8 D. Fletcher, V. Martinez Opioid-induced hyperalgesia in patients after surgery: A systematic review and a meta-analysis Br J Anaesth, 112 (2014), pp. 991-1004
9 L.F. Chu, M.S. Angst, D. Clark Opioid-induced hyperalgesia in humans: Molecular mechanisms and clinical considerations Clin J Pain, 24 (2008), pp. 479-496
10 K. Hahnenkamp, J. Nollet, H.K. Van Aken, et al. Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes Anesthesiology, 100 (2004), pp. 1531-1537
11 W. Chen, H.H. Chung, J.T. Cheng Opiate-induced constipation related to activation of small intestine opioid μ2-receptors World J Gastroenterol, 18 (2012), pp. 1391-1396
12 A Kurz, DI Sessler Opioid-induced bowel dysfunction: Pathophysiology and potential new therapies Drugs, 63 (2003), pp. 649-671
13 M.J. Scott, G. Baldini, K.C.H. Fearon, et al. Enhanced Recovery after Surgery (ERAS) for gastrointestinal surgery, part 1: Pathophysiological considerations Acta Anaesthesiol Scand, 59 (2015), pp. 1212-1231
14 S. Bimonte, A. Barbieri, D. Rea, et al. Morphine promotes tumor angiogenesis and increases brest cancer progression Biomed Res Int, 2015 (2014), pp. 1-8
15 K. Wang, X. Qu, Y. Wang, et al. Effect of mu agonists on long-term survival and recurrence in nonsmall cell lung cancer patients Medicine (Baltimore), 94 (2015), pp. 1-9
16 Á Heaney, DJ Buggy Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth, 109 (2012), pp. 17-28
17 M. Bakan, T. Umutoglu, U. Topuz, et al. Anestesia venosa total livre de opioides, com infusões de propofol, dexmedetomidina e lidocaína para colecistectomia laparoscópica: Estudo prospectivo, randomizado e duplo-cego Braz J Anestesiol, 65 (2015), pp. 191-199
18 D.J. Kim, R. Bengali, A. Anderson Opioid-free anesthesia using continuous dexmedetomidine and lidocaine infusions in spine surgery Korean J Anesthesiol, 70 (2017), pp. 652-653
19 I. Basha A systematic analysis on opioid-free general anesthesia versus opioid-based general anesthesia for bariatric surgery Nurse Anesthesia Capstones, 9 (2017), pp. 1-21
20 L. Telci, F. Esen, D. Akcora, et al. Evaluation of effects of magnesium sulphate in reducing intraoperative anaesthetic requirements Br J Anaesth, 89 (2002), pp. 594-598
21 A. Altan, N. Turgut, F. Yildiz, et al. Effects of magnesium sulphate and clonidine on propofol consumption, haemodynamics and postoperative recovery Br J Anaesth, 94 (2005), pp. 438-441
22 T.O. Seyhan, M. Tugrul, M.O. Sungur, et al. Effects of three different dose regimens of magnesium on propofol requirements, haemodynamic variables and postoperative pain relief in gynaecological surgery Br J Anaesth, 96 (2006), pp. 247-252
23 K. Gupta, V. Vohra, J. Sood The role of magnesium as an adjuvant during general anaesthesia Anaesthesia, 61 (2006), pp. 1058-1063
24 E. Albrecht, K.R. Kirkham, S.S. Liu, et al. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: A meta-analysis Anaesthesia, 68 (2013), pp. 79-90
25 S. Arumugam, C.S.M. Lau, R.S. Chamberlain Perioperative adjunct magnesium decreases postoperative opioid requirements – A meta-analysis Int J Clin Med, 7 (2016), pp. 297-308
26 B. Olgun, G. Oguz, M. Kaya, et al. The effects of magnesium sulphate on desflurane requirement, early recovery and postoperative analgesia in laparoscopic cholecystectomy Magnesium Res, 25 (2012), pp. 72-78
27 SJ Pocock The size of a clinical trial SJ Pocock (Ed.), Clinical trials: a practical approach, John Wiley & Sons, Chhinchester (1983), pp. 123-141
28 FT Mendonça, LM da GM De Queiroz, CCR Guimarães, et al. Effects of lidocaine and magnesium sulfate in attenuating hemodynamic response to tracheal intubation: single-center, prospective, double-blind, randomized study Braz J Anesthesiol, 67 (2017), pp. 50-56
29 J. Wennervirta, M. Hynynen, A.M. Koivusalo, et al. Surgical stress index as a measure of nociception/antinociception balance during general anesthesia Acta Anaesthesiol Scand, 52 (2008), pp. 1038-1045
30 M. Gruenewald, P. Meybohm, C. Illies, et al. Influence of different remifentanil concentration on the performance of the surgical stress index to detect a standardized painful stimulus during sevoflurane anaesthesia Br J Anaesth, 103 (2009), pp. 586-593
31 C. Ilies, M. Gruenewald, J. Ludwigs, et al. Evaluation of the surgical stress index during spina and general anaesthesia Br J Anaesth, 105 (2010), pp. 533-537
32 X. Chen, C. Thee, M. Gruenewald, et al. Comparison of Surgical Stress Index-guided Analgesia with Standard Clinical Practice during Routine General Anesthesia Anesthesiology, 112 (2010), pp. 1175-1183
33 S. Mustola, J. Toivonen Effect-site concentration of remifentanil attenuating surgical stress index responses to intubation of the trachea Anaethesia, 65 (2010), pp. 581-585
34 H. Koinig, T. Wallner, P. Marhofer, et al. Magnesium sulfate reduces intra- and postoperative analgesic requirements Anesth Analg, 87 (1998), pp. 206-210
35 H. Kara, N. Sahin, V. Ulusan, et al. Magnesium infusion reduces perioperative pain Eur J Anaesthesiol, 19 (2002), pp. 52-56
36 J.C. Hoi, K.B. Yoon, D.J. Um, et al. Intravenous magnesium sulfate administration reduces Propofol infusion requirements during maintenance of Propofol-N2O anesthesia Anesthesiology, 97 (2002), pp. 1137-1141
37 P. Cizmeci, Z. Ozkose Magnesium sulphate as an adjuvante to total intravenous anesthesia in septorhinoplasty: a randomized controlled study Aesth Plast Surg, 31 (2007), pp. 167-173
38 J.H. Ryu, L.S. Sohn, SH Do Controlled hypotension for middle ear surgery: a comparison between remifentanil and magnesium sulphate Br J Anaesth, 103 (2009), pp. 490-495
39 P.A. Germano Filho, I.L. Cavalcanti, L. Barrucand, et al. Effect of magnesium sulphate on sugammadex reversal time for neuromuscular blockade: A randomised controlled study Anaesthesia, 70 (2015), pp. 956-961