Brazilian Journal of Anesthesiology
https://app.periodikos.com.br/journal/rba/article/doi/10.1016/j.bjane.2018.09.001
Brazilian Journal of Anesthesiology
Scientific Article

Effects of repeated exposure to different concentrations of sevoflurane on the neonatal mouse hippocampus

Efeitos da exposição repetida a diferentes concentrações de sevoflurano sobre o hipocampo de ratos neonatos

Omid Azimaraghi; Maryam Nezhad Sistani; Mohammad-Amin Abdollahifar; Ali Movafegh; Anahid Maleki; Ebrahim Soltani; Alireza Shahbazkhani; Reza Atef-Yekta

Downloads: 0
Views: 945

Abstract

Abstract Background and objectives: Developing brain is more vulnerable to environmental risk than is the developed brain. We evaluated the effects of repeated exposure to different concentrations of sevoflurane on the neonatal mouse hippocampus using stereological methods. Methods: Eighteen neonatal male mice were randomly divided into three groups. Group A, inhaled sevoflurane at a concentration of 1.5%; Group B, inhaled sevoflurane at a concentration of 3%; and Group C (control group), inhaled only 100% oxygen. Treatments were applied for 30 min a day for 7 consecutive days. The hippocampal volume, dendrite length, number of neurons, and number of glial cells were evaluated in each group using stereological estimations. Results: We identified a ∼2% reduction in the volume of the hippocampus in Group A compared to Group C. Mean hippocampal volume was ∼11% smaller in Group B than it was in Group C. However, these differences in hippocampal volume between the groups were not statistically significant (p > 0.05 for all). As for the number of neurons, we found significantly fewer neurons in Group A (∼29% less) and Group B (∼43% less) than we did in Group C (p < 0.05 for both). The dendrite length was ∼8% shorter in Group A and ∼11% shorter in Group B than it was in Group C. Conclusions: Repeated exposure to sevoflurane, regardless of the concentration, reduced the volume of the neonatal mouse hippocampus, as well as the number of neurons and dendrite length.

Keywords

Sevoflurane, Hippocampus, Neonatal mice, Stereology, Neurotoxicity

Resumo

Resumo Justificativa e objetivos: O cérebro em desenvolvimento é mais vulnerável ao risco ambiental do que o cérebro já desenvolvido. Avaliamos os efeitos da exposição repetida a diferentes concentrações de sevoflurano sobre o hipocampo de ratos neonatos com o uso de métodos estereológicos. Métodos: Dezoito ratos neonatos foram divididos aleatoriamente em três grupos. O Grupo A foi submetido à inalação de sevoflurano a uma concentração de 1,5%; o Grupo B foi submetido à inalação de sevoflurano a uma concentração de 3%; o Grupo C (controle) foi submetido à inalação de apenas oxigênio a 100%. Os tratamentos foram aplicados durante 30 minutos por dia, durante sete dias consecutivos. Volume do hipocampo, comprimento do dendrito, número de neurônios e número de células gliais foram avaliados em cada grupo com o uso de estimativas estereológicas. Resultados: Identificamos uma redução de ∼2% no volume do hipocampo no Grupo A em comparação com o Grupo C. O volume médio do hipocampo foi ∼11% menor no Grupo B do que no Grupo C. Entretanto, essas diferenças no volume do hipocampo entre os grupos não foram estatisticamente significativas (p > 0,05 para todos). Quanto ao número de neurônios, encontramos um número significativamente menor de neurônios no Grupo A (∼29% menos) e no Grupo B (∼43% menos) do que no Grupo C (p < 0,05 para ambos). O comprimento do dendrito foi ∼8% menor no Grupo A e ∼1% menor no Grupo B que no Grupo C. Conclusões: A exposição repetida ao sevoflurano, independentemente da concentração, reduziu o volume do hipocampo neonatal de camundongos, bem como o número de neurônios e o comprimento dos dendritos.

Palavras-chave

Sevoflurano, Hipocampo, Ratos neonatais, Estereologia, Neurotoxicidade

References

Jevtovic-Todorovic V. Developmental synaptogenesis and general anesthesia: a kiss of death?. Curr Pharm Des. 2012;18:6225-31.

Mariussen E. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol. 2012;86:1349-67.

Viberg H, Fredriksson A, Jakobsson E. Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci. 2003;76:112-20.

Buratovic S. Low-dose ionizing radiation induces neurotoxicity in the neonate: acute or fractionated doses and interaction with xenobiotics in mice. 2016.

Sakai EM, Connolly LA, Klauck JA. Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy. 2005;25:1773-88.

Lerman J, Sikich N, Kleinman S. The pharmacology of sevoflurane in infants and children. Anesthesiology. 1994;80:814-24.

Esper T, Wehner M, Meinecke CD. Blood/gas partition coefficients for isoflurane, sevoflurane, and desflurane in a clinically relevant patient population. Anesth Analg. 2015;120:45-50.

Tokuwaka J, Satsumae T, Mizutani T. The relationship between age and minimum alveolar concentration of sevoflurane for maintaining bispectral index below 50 in children. Anaesthesia. 2015;70:318-22.

Sikich N, Lerman J. Development and psychometric evaluation of the pediatric anesthesia emergence delirium scale. Anesthesiology. 2004;100:1138-45.

Kalkman CJ, Peelen L, Moons KG. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology. 2009;110:805-12.

Yip P, Middleton P, Cyna AM. Cochrane review: non-pharmacological interventions for assisting the induction of anaesthesia in children. Evid Based Child Health. 2011;6:71-134.

Ing C, DiMaggio C, Whitehouse A. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130:476-85.

Zhou X, Li W, Chen X. Dose-dependent effects of sevoflurane exposure during early lifetime on apoptosis in hippocampus and neurocognitive outcomes in Sprague-Dawley rats. Int J Physiol Pathophysiol Pharmacol. 2016;8:111-9.

Wang SQ, Fang F, Xue ZG. Neonatal sevoflurane anesthesia induces long-term memory impairment and decreases hippocampal PSD-95 expression without neuronal loss. Eur Rev Med Pharmacol Sci. 2013;17:941-50.

Fang F, Song R, Ling X. Multiple sevoflurane anesthesia in pregnant mice inhibits neurogenesis of fetal hippocampus via repressing transcription factor Pax6. Life Sci. 2017;175:16-22.

Chen C, Shen FY, Zhao X. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats. ASN Neuro. 2015;7.

Lu Y, Huang Y, Jiang J. Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats. Biomed Pharmacother. 2016;78:322-8.

Marečková K, Mareček R, Bencurova P. Perinatal stress and human hippocampal volume: findings from typically developing young adults. Sci Rep. 2018;16:4696.

Rao U, Chen LA, Bidesi AS. Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry. 2010;15:357-64.

Morra JH, Tu Z, Apostolova LG. Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Hum Brain Mapp. 2009;30:2766-88.

5dcafafe0e8825e63703b87a rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections