The effect of anesthetic preconditioning with sevoflurane on intracellular signal-transduction pathways and apoptosis, in a lung autotransplant experimental model
O efeito do pré-condicionamento anestésico com sevoflurano sobre as vias de transdução de sinal intracelular e a apoptose, em modelo experimental de autotransplante pulmonar
Ignacio Garutti; Francisco Gonzalez-Moraga; Guillermo Sanchez-Pedrosa; Javier Casanova; Beatriz Martin-Piñeiro; Lisa Rancan; Carlos Simón; Elena Vara
Abstract
Keywords
Resumo
Palavras-chave
References
De Perrot M, Liu M, Waddell TK. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167:490-511.
Imai M, Kon S, Inaba H. Effects of halothane, isoflurane and sevoflurane on ischemia-reperfusion injury in the perfused liver of fasted rats. Acta Anaesthesiol Scand. 1996;40:1242-8.
Kong HY, Zhu SM, Wang LQ. Sevoflurane protects against acute kidney injury in a small-size liver transplantation model. Am J Nephrol. 2010;32:347-55.
Yao YT, Fang NX, Shi CX. Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Chin Med J (Engl). 2010;123:1320-8.
Ding Q, Wang Q, Deng J. Sevoflurane preconditioning induces rapid ischemic tolerance against spinal cord ischemia/reperfusion through activation of extracellular signal-regulated kinase in rabbits. Anesth Analg. 2009;109:1263-72.
Codaccioni JL, Velly LJ, Moubarik C. Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology. 2009;110:1271-8.
Casanova J, Garutti I, Simón C. Effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011;113:742-8.
Semenza GL. Cellular and molecular dissection of reperfusion injury: ROS within and without. Circ Res. 2000;86:117-8.
Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776-81.
Lips DJ, Purcell NH, Kaiser RA. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation. 2004;109:1938-41.
Zhong C, Zhou Y, Liu H. Nuclear factor kappa B and anesthetic preconditioning during myocardial ischemia-reperfusion. Anesthesiology. 2004;100:540-6.
den Hengst WA, Gielis JF, Lin JY. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299:H1283-99.
O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006;5:549-63.
Song L, Li D, Wang J. Effects of p38 mitogen-activated protein kinase on lung ischemia-reperfusion injury in diabetic rats. J Surg Res. 2017;216:9-17.
Sakiyama S, Hamilton J, Han B. Activation of mitogen-activated protein kinases during human lung transplantation. J Heart Lung Transplant. 2005;24:2079-85.
Yamamoto S, Yamane M, Yoshida O. Activations of mitogen-activated protein kinases and regulation of their downstream molecules after rat lung transplantation from donors after cardiac death. Transplant Proc. 2011;43:3628-33.
Ishii M, Suzuki Y, Takeshita K. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. J Immunol. 2004;172:2569-77.
Wolf PS, Merry HE, Farivar AS. Stress-activated protein kinase inhibition to ameliorate lung ischemia reperfusion injury. J Thorac Cardiovasc Surg. 2008;135:656-65.
Hashimoto N, Takeyoshi I, Yoshinari D. Effects of a p-38 mitogen-activated protein kinase inhibitor as an additive to Euro Collins solution on reperfusion injury in canine lung transplantation. Transplantation. 2002;74:320-6.
Kawashima Y, Takeyoshi I, Otani Y. FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogenactivated protein kinase. J Heart Lung Transplant. 2001;20:568-74.
Chen HE, Ma YC, He JB. Ischemic postconditioning attenuates pneumocyte apoptosis after lung ischemia/reperfusion injury via inactivation of p38 MAPK. Zhongguo Ying Yong Sheng LiXue Za Zhi. 2014;30:251-6.
Yu J, Mizumoto K, Tokinaga Y. The inhibitory effects of sevoflurane on angiotensin II-induced, p44/42 mitogen-activated protein kinase-mediated contraction of rat aortic smooth muscle. Anesth Analg. 2005;101:315-21.
Wang H, Lu S, Yu Q. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci. 2011;3:604-15.
Sun SX, Ge BX, Miao CH. Effects of preconditioning with sevoflurane on TNF-α-induced permeability and activation of p38 MAPK in rat pulmonary microvascular endothelial cells. Cell Biochem Biophys. 2011;61:123-9.
Oshumi A, Marseu K, Slinger P. Sevoflurane attenuates ischemia-reperfusion injury in a rat lung transplantation model. Ann Thorac Surg. 2017;103:1578-86.
Chen S, Lotz C, Roewer N. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects. Eur J Med Res. 2018;23:10.
Zaugg M, Lucchinetti E, Spahn DR. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K (ATP) channels via multiple signaling pathways. Anesthesiology. 2002;97:4-14.
Tanaka K, Ludwig LM, Kersten JR. Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology. 2004;100:707-21.
Xu Z, Ji X, Boysen PG. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol. 2004;286:H1433-40.
Grossini E, Molinari C, Caimmi PP. Levosimendan induces NO production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role for mitochondrial KATP channel. Br J Pharmacol. 2009;156:250-61.
Carter AB, Knudtson KL, Monick MM. The p-38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression: the role of TATA-binding protein (TBP). J Biol Chem. 1999;274:30858-63.
Saccani S, Pantano S, Natoli G. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol. 2002;3:69-75.
Mikrou A, Kalimeris KA, Lilis I. Molecular studies of the immunological effect of the sevoflurane preconditioning in the liver and lung in a rat model of liver ischemia/reperfusion injury. Mol Immunol. 2016;72:1-8.
Susnow N, Zeng L, Margineantu D. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009;19:42-9.
Öllinger R, Pratschke J. Role of heme oxygenase-1 in transplantation. Transpl Int. 2010;23:1071-81.
Wu SY, Li MH, Ko FC. Protective effect of hypercapnic acidosis in ischemia-reperfusion lung injury is attributable to upregulation of heme oxygenase-1. PLoS ONE. 2013;10:1-13.
Stammberger U, Gaspert A, Hillinger S. Apoptosis induced by ischemia and reperfusion in experimental lung transplantation. Ann Thorac Surg. 2000;69:1532-6.
Ng CS, Wan S, Yim AP. Pulmonary ischaemia-reperfusion injury: role of apoptosis. Eur Respir J. 2005;25:356-63.
Fischer S, Maclean AA, Liu M. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med. 2000;162:1932-9.
Quadri SM, Segall L, De Perrot M. Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. Am J Transp. 2005;5:292-9.
Wang L, Ye Y, Su HB. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways. Braz J Med Biol Res. 2017;50:1-8.
Yon JH, Daniel-Johnson J, Carter LB. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience. 2005;135:815-27.
Kalimeris K, Christodoulaki K, Karakitsos P. Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung. Acta Anaesthesiol Scand. 2011;55:740-8.
Inamura Y, Miyamae M, Sugioka S. Sevoflurane postconditioning prevents activation of caspase 3 and 9 through antiapoptotic signaling after myocardial ischemia-reperfusion. J Anesth. 2010;24:215-24.
Istaphanous GK, Howard J, Nan X. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114:578-87.
Lu X, Moore PG, Liu H. Phosphorylation of ARC is a critical element in the antiapoptotic effect of anesthetic preconditioning. Anesth Analg. 2011;112:525-31.
Zhong C, Zhou Y, Liu H. and anesthetic preconditioning during myocardial ischemia-reperfusion. Anesthesiology. 2004;100:540-6.
Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of p-38 mitogen activated protein kinases. Mol Pharmacol. 2004;65:1172-80.