Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis
Isoflurano fornece neuroproteção em lesão cerebral hipóxico-isquêmica neonatal por inibição da apoptose
De-An Zhao; Ling-Yun Bi; Qian Huang; Fang-Min Zhang; Zi-Ming Han
Abstract
Keywords
Resumo
Palavras-chave
References
Feiner JR, Bickler PE, Estrada S. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg. 2005;100:215-25.
Kataoka K, Yanase H. Mild hypothermia - a revived countermeasure against ischemic neuronal damages. Neurosci Res. 1998;32:103-17.
Hara M, Kai Y, Ikemoto Y. Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology. 1993;79:781-8.
Kochs E, Hoffman WE, Werner C. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology. 1992;76:245-52.
Hans P, Bonhomme V, Collette J. Propofol protects cultured rat hippocampal neurons against N-methyl-d-aspartate receptor-mediated glutamate toxicity. J Neurosurg Anesthesiol. 1994;6:249-53.
Daskalopoulos R, Korcok J, Farhangkhgoee P. Propofol protection of sodium-hydrogen exchange activity sustains glutamate uptake during oxidative stress. Anesth Analg. 2001;93:1199-204.
Grasshoff C, Gillessen T. The effect of propofol on increased superoxide concentration in cultured rat cerebrocortical neurons after stimulation of N-methyl-d-aspartate receptors. Anesth Analg. 2002;95:920-2.
O'Shea SM, Wong LC, Harrison NL. Propofol increases agonist efficacy at the GABA(A) receptor. Brain Res. 2000;852:344-8.
Yano T, Nakayama R, Ushijima K. Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant. Brain Res. 2000;883:69-76.
Tsai YC, Huang SJ, Lai YY. Propofol does not reduce infarct volume in rats undergoing permanent middle cerebral artery occlusion. Acta Anaesthesiol Sin. 1994;32:99-104.
Burchell SR, Dixon BJ, Tang J. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury. J Investig Med. 2013;61:1078-83.
Chung IS, Kim JA, Choi HS. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor kappaB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg. 2013;116:327-35.
Harr JN, Moore EE, Stringham J. Isoflurane prevents acute lung injury through ADP-mediated platelet inhibition. Surgery. 2012;152:270-6.
Kinoshita H, Matsuda N, Iranami H. Isoflurane pretreatment preserves adenosine triphosphate-sensitive K(+) channel function in the human artery exposed to oxidative stress caused by high glucose levels. Anesth Analg. 2012;115:54-61.
Kim M, Kim N, D’Agati VD. Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways. Am J Physiol Renal Physiol. 2007;293:F1827-35.
Lang XE, Wang X, Zhang KR. Isoflurane preconditioning confers cardioprotection by activation of ALDH2. PLoS ONE. 2013;8:e52469.
Sasaoka N, Kawaguchi M, Kawaraguchi Y. Isoflurane exerts a short-term but not a long-term preconditioning effect in neonatal rats exposed to a hypoxic-ischaemic neuronal injury. Acta Anaesthesiol Scand. 2009;53:46-54.
Ferriero DM, Bonifacio SL. The search continues for the elusive biomarkers of neonatal brain injury. J Pediatr. 2014;164:438-40.
Altay O, Suzuki H, Hasegawa Y. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43:2513-6.
Li H, Yin J, Li L. Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB activation and interleukin 1beta production to provide neuroprotection in rats and mice. Neurobiol Dis. 2013;54:216-24.
Li L, Zuo Z. Isoflurane postconditioning induces neuroprotection via Akt activation and attenuation of increased mitochondrial membrane permeability. Neuroscience. 2011;199:44-50.
Khatibi NH, Ma Q, Rolland W. Isoflurane posttreatment reduces brain injury after an intracerebral hemorrhagic stroke in mice. Anesth Analg. 2011;113:343-8.
Statler KD, Alexander H, Vagni V. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076:216-24.
Zhou Y, Lekic T, Fathali N. Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke. 2010;41:1521-7.
Dallasen RM, Bowman JD, Xu Y. Isoflurane does not cause neuroapoptosis but reduces astroglial processes in young adult mice. Med Gas Res. 2011;1:27.
Tokunaga H, Hiramatsu K, Sakaki T. Effect of preceding in vivo sublethal ischemia on the evoked potentials during secondary in vitro hypoxia evaluated with gerbil hippocampal slices. Brain Res. 1998;784:316-20.
Fairchild MD, Parsons JE, Wasterlain CG. A hypoxic injury potential in the hippocampal slice. Brain Res. 1988;453:357-61.
Sick TJ, Solow EL, Roberts Jr. EL. Extracellular potassium ion activity and electrophysiology in the hippocampal slice: paradoxical recovery of synaptic transmission during anoxia. Brain Res. 1987;418:227-34.
Pellegrini-Giampietro DE, Gorter JA, Bennett MV. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci. 1997;20:464-70.
Hirose K, Chan PH. Blockade of glutamate excitotoxicity and its clinical applications. Neurochem Res. 1993;18:479-83.
Kollegger H, McBean GJ, Tipton KF. Reduction of striatal N-methyl-d-aspartate toxicity by inhibition of nitric oxide synthase. Biochem Pharmacol. 1993;45:260-4.
Salinska E, Pluta R, Puka M. Blockade of N-methyl-d-aspartate-sensitive excitatory amino acid receptors with 2-amino-5-phosphonovalerate reduces ischemia-evoked calcium redistribution in rabbit hippocampus. Exp Neurol. 1991;112:89-94.
Xie Y, Zacharias E, Hoff P. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain. J Cereb Blood Flow Metab. 1995;15:587-94.
Cobas A, Fairen A, Alvarez-Bolado G. Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience. 1991;40:375-97.
Lauder JM, Han VK, Henderson P. Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience. 1986;19:465-93.
Globus MY, Busto R, Martinez E. Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem. 1991;57:470-8.
Kemp JA, Leeson PD. The glycine site of the NMDA receptor-five years on. Trends Pharmacol Sci. 1993;14:20-5.
Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835-7.