Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/S0104-14282013005000025
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Mechanical Properties, Morphology and Thermal Degradation of a Biocomposite of Polypropylene and Curaua Fibers: Coupling Agent Effect

Mano, Barbara; Araujo, Joyce R.; Paoli, Marco A. de; Waldman, Walter R.; Spinacé, Márcia A. S.

Downloads: 0
Views: 1227

Abstract

Biocomposites of polymers with vegetal fibers have a broad spectrum of applications due to their high specific properties in comparison to their counterparts made with fiberglass. Polypropylene, PP, composites with curaua fiber compatibilized with different concentrations of maleic anhydride grafted polypropylene, PP-g-MA, were characterized according to their mechanical properties, morphologies and thermal stabilities in oxidative and inert atmospheres. The composites were prepared by single screw extrusion and injection molded specimens were used for testing. The composite with 20 wt % of curaua fiber with and without compatibilizer presented improved mechanical properties compared to pure PP. The use of PP-g-MA as a compatibilizer significantly increased fiber/matrix adhesion, however, the mechanical properties were only slightly improved in comparison with composites without compatibilizer. We observed an improvement in thermal stability of the composites, compared to that expected from the weighted average of the individual components, both under inert and oxidative atmospheres. Furthermore, the thermal stability improved under inert atmosphere as a function of the concentration of compatibilizer. In this situation, indeed, there was a different shift of the weight loss processes owing to the presence of the compatibilizer

Keywords

Thermal degradation, coupling agent, curaua fibres, biocomposites

References

1. Joshi, S. V.; Drzal, L. T.; Mohanty, A. K. & Arora, S. - Compos.: Part A, 35, p.371 (2004). http://dx.doi.org/10.1016/j.compositesa.2003.09.016

2. Leão, A. L.; Caraschi, J. C.; Tan, I. H.; Kozlowski, R. & Many, S. - Plástico Ind., 31, p.214 (2001).

3. Zah, R.; Hischier, R.; Leao, A. L. & Braun, I. J. - Cleaner Prod., 15, p.1032 (2007). http://dx.doi.org/10.1016/j.jclepro.2006.05.036

4. Baillif, M. & Echtermeyer, A. J. Appl. Pol. Sci., 115, p.2794 (2010). http://dx.doi.org/10.1002/app.30421

5. Bengtsson, M.; Baillif, M. & Oksman, K. Compos.: Part A, 38, p.1922 (2007). http://dx.doi.org/10.1016/j.compositesa.2007.03.004

6. Balzer, P. S.; Vicente, L. L.; Briesemeister, R.; Becker, D.; Sordi, V.; Rodolfo Junior, A. & Feltran, M. B. Polímeros, 17, p.1 (2007). http:// dx.doi.org/10.1590/S0104-14282007000100004

7. Silva, R.; Haraguchi, S. K.; Muniz, E. C. & Rubira, A. F. - Quim. Nova, 32, p.661 (2009). http://dx.doi.org/10.1590/S0100- 40422009000300010

8. Joseph, P.V., Joseph, K. & Thomas, S. - Compos. Sci. Technol., 59, p.1625 (1999). http://dx.doi.org/10.1016/S0266-3538(99)00024-X

9. Bledski, A. K. & Gassan, J. - Prog. Polym. Sci., 24, p.221 (1999).

10. Santos, P. A.; Spinace, M. A. S.; Fermoselli, K. K. G. & De Paoli, M. A.- Polimeros, 19, p.31 (2009).

11. Santos, E. S.; Moresco, M.; Rosa, S. M. L. & Nachtigall, S. M. B. - Polímeros, 20, p.215 (2010). http://dx.doi.org/10.1590/S0104- 14282010005000036

12. Bettini, S. H. P. & Agnelli, J. A. M. - Polym. Test., 19, p.3 (2000). http://dx.doi.org/10.1016/S0142-9418(98)00066-X

13. Araujo, J. R.; Waldman, W. R. & De Paoli, M. A. - Polym. Degrad. Stab., 93, p.1770 (2008).

14. Satyanarayana, K. G.; Guimarães, J. L. & Wypych, F. - Compos.: Part A, 38, p.1694 (2007). http://dx.doi.org/10.1016/j. compositesa.2007.02.006

15. Santos, P. A.; Spinace, M. A. S.; Fermoselli, K. K. G. & De Paoli, M. A. - Compos.: Part A, 38, p.2404 (2007). http://dx.doi.org/10.1016/j. compositesa.2007.08.011

16. Spinacé, M. A. S.; Lambert, C. S.; Fermoselli, K. K. G. & De Paoli, M. A. - Carbohydr. Polym., 77, p.47 (2009). http://dx.doi.org/10.1016/j. carbpol.2008.12.005

17. Waldman, W. R. & De Paoli, M. A. - Polym. Degrad. Stab. 60, p.301 (1998). http://dx.doi.org/10.1016/S0141-3910(97)00083-9

18. Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. H. & Liang, D. T. - Energy & Fuels, 20, p.388 (2006). http://dx.doi.org/10.1021/ ef0580117 168

19. Hatakeyama, T. & Hatakeyama, H. - “Thermal Properties of Green Polymers and Biocomposites”, Kluwer Academic Publishers, New York (2005).

20. Canetti, M.; Bertini, F.; Chirico, A. D. & Audisio, G. - Polym. Degrad. Stab., 91, p.494 (2008). http://dx.doi.org/10.1016/j. polymdegradstab.2005.01.052

21. Kosikova, B.; Gregorova, A.; Osvald, A. & Krajcovicova, J. - Appl. Pol. Sci., 103, p.1226 (2007).

22. De Paoli, M. A.; Rodrigues, M. A. & Furlan, L. T. - Polym. Degrad. Stab., 13, p.337 (1985).
5883718f7f8c9d0a0c8b4966 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections