Composites of natural rubber with curaua fibers
João D’Anuzio Lima de Azevedo; Virgínia Mansanares Giacon; José Roberto Ribeiro Bortoleto
Abstract
Keywords
References
1 Azevedo, A. R. G., Amin, M., Hadzima-Nyarko, M., Agwa, I. S., Zeyad, A. M., Tayeh, B. A., & Adesina, A. (2022). Possibilities for the application of agro-industrial wastes in cementitious materials: a brief review of the Brazilian perspective.
2 Souza, F. G., Jr., Oliveira, G. E., Rodrigues, C. H. M., Soares, B. G., Nele, M., & Pinto, J. C. (2009). Natural Brazilian Amazonic (Curaua) fibers modified with polyaniline nanoparticles.
3 Colorado, H. A., Monteiro, S. N., Delaqua, G. C. G., & Vieira, C. M. (2023). Natural vegetable fibers used from Colombia and their use as potential reinforcement for composite materials. In
4 Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties, and applications.
5 Silva, R. L. (2014).
6 Spinacé, M. A. S., Lambert, C. S., Fermoselli, K. K. G., & De Paoli, M.-A. (2009). Characterization of lignocellulosic curaua fibers.
7 Caraschi, J. C., & Leão, A. L. (2000). Characterization of curaua fiber
8 Zwawi, M. (2021). A review on natural fiber bio-composites, surface modifications and applications.
9 Członka, S., Kerche, E. F., Neves, R. M., Strąkowska, A., & Strzelec, K. (2021). Bio-based rigid polyurethane foam composites reinforced with bleached Curauá fiber.
10 Zah, R., Hischier, R., Leão, A. L., & Braun, I. (2007). Curaua fibers in the automobile industry–a sustainability assessment.
11 Gonçalves, F. A. C., Amaral, E. L. S., Lopes, J. L., Jr., Lopes, B. L. S., Ribeiro, L. S., Jr., Brabo, D. R., & Amarante, C. B. (2018). Plant fibers: general aspects, utilization, technological innovation and use in composites.
12 Libera, V. D., Jr., Teixeira, L. A., Leão, R. M., & Luz, S. M. (2019). Evaluation of thermal behavior and cure kinetics of a curauá fiber prepreg by the non-isothermal method.
13 Delgado-Aguilar, M., Tarrés, Q., Marques, M. F. V., Espinach, F. X., Julián, F., Mutjé, P., & Vilaseca, F. (2019). Explorative study on the use of Curauá reinforced polypropylene composites for the automotive industry.
14 del Pino, G. G., Bezazi, A., Boumediri, H., Kieling, A. C., Garcia, S. D., Torres, A. R., Soares, R. S., Macêdo, J. C., No., Dehaini, J., & Panzera, T. H. (2021). Optimal tensile properties of biocomposites made of treated amazonian Curaua fibres using Taguchi method.
15 Jesus, L. C. C., Oliveira, J. M., Leão, R. M., Beltrami, L. R., Zattera, A. J., Anflor, C. T. M., Doca, T. C. R., & Luz, S. M. (2022). Tensile behavior analysis combined with digital image correlation and mechanical and thermal properties of microfibrillated cellulose fiber/polylactic acid composites.
16 Teixeira, F. P., & Silva, F. A. (2020). On the use of natural curaua reinforced cement based composites for structural applications.
17 Salgado, I. P., & Silva, F. A. (2021). Flexural behavior of sandwich panels combining curaua fiber-reinforced composite layers and autoclaved aerated concrete core.
18 Masłowski, M., Aleksieiev, A., Miedzianowska, J., & Strzelec, K. (2021). Common nettle (Urtica dioica L.) as an active filler of natural rubber biocomposites.
19 Lozada, E. R., Aguilar, C. M. G., Carvalho, J. A. J., Sánchez, J. C., & Torres, G. B. (2023). Vegetable cellulose fibers in natural rubber composites.
20 Zhou, Y., Fan, M., & Chen, L. (2016). Interface and bonding mechanisms of plant fiber composites: an overview.
21 van Beilen, J. B., & Poirier, Y. (2007). Establishment of new crops for the production of natural rubber.
22 Khan, M. Z. R., & Srivastava, S. K. (2018). Development, characterization and application potential of bio-composites: a review.
23 Rybiński, P., Syrek, B., Masłowski, M., Miedzianowska, J., Strzelec, K., Żukowski, W., & Bradło, D. (2018). Influence of lignocellulose fillers on properties natural rubber composites.
24 Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fiber composites and their mechanical performance.
25 Mouhoubi, S., Bourahli, M. E. H., Osmani, H., & Abdeslam, S. (2017). Effect of alkali treatment on alfa fibers behavior.
26 Oliveira, P. F., & Marques, M. F. V. (2014). Comparison between coconut and curaua fibers chemically treated for compatibility with PP matrixes.
27 Xiong, X., Bao, Y., Liu, H., Zhu, Q., Lu, R., & Miyakoshi, T. (2019). Study on mechanical and electrical properties of cellulose nanofibrils/graphene-modified natural rubber.
28 Tenazoa, C., Savastano, H., Charca, S., Quintana, M., & Flores, E. (2021). The effect of alkali treatment on chemical and physical properties of ichu and cabuya fibers.
29 Prasanna, G. V., Srilekha, R., Sri Harsha, A. V. N., Sai Abhi Chandan, V., & Sunil Kumar, V. (2021). Hybridization and influence of chemical treatment on the morphology and optimization of composites.
30 Santos, L. M. P. (2015).
31 Souza, J. R., Fo. (2015).
32 Sales, C. G. (2015).
33 Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer.
34 Vaccioli, K. B. (2022).
35 Cerna Ñahuis, L. E. (2021).
36 Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibers.
37 Miedzianowska, J., Masłowski, M., Rybiński, P., & Strzelec, K. (2020). Properties of chemically modified (selected silanes) lignocellulosic filler and its application in natural rubber biocomposites.
38 Karim, A. F. A., Ismail, H., & Ariff, Z. M. (2015). Properties and characterization of kenaf-filled natural rubber latex foam.
39 Moonart, U., & Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites.
40 Hasan, A., Rabbi, M. S., & Billah, M. M. (2022). Making the lignocellulosic fibers chemically compatible for composite: a comprehensive review.
41 Sekino, N. (2016). Density dependence in the thermal conductivity of cellulose fiber mats and wood shavings mats: investigation of the apparent thermal conductivity of coarse pores.
42 Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials.
43 Dikmen, N., & Ozkan, S. T. E. (2016). Unconventional insulation materials. In A. Almusaed & A. Almssad (Eds.),
44 Satish, P., Kumar, M. D. S., Prasanna, A. B., & Prakash, C. D. S. (2020). Investigation on behavioural aspects of pine apple leaf fiber-latex composites used for transformer applications.
45 Saffian, H. A., Talib, M. A., Lee, S. H., Md Tahir, P., Lee, C. H., Ariffin, H., & Mohamed Asa’ari, A. Z. (2020). Mechanical strength, thermal conductivity, and electrical breakdown of kenaf core fiber/lignin/polypropylene biocomposite.
46 Agus Suryawan, I. G. P., Suardana, N. P. G., Winaya, I. N. S., & Budiarsa Suyasa, I. W. (2020). Study on correlation between hardness and thermal conductivity of polymer composites reinforced with stinging nettle fiber.
47 Paiva, F. F. G., Maria, V. P. K., Barrera Torres, G., Dognani, G., Santos, R. J., Cabrera, F. C., & Job, A. E. (2019). Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals.
48 Ubi, P. A., Adah, P. U., Ademoh, N. A., Salawu, A. A., Hassan, A. B., Dashe, J. D., & Oyeyemi, S. W. (2022). Rice husk ash reinforced natural rubber composites: effect of benzene diazonium salt treatment.
49 Gurjar, A. K., Kulkarni, S. M., Joladarashi, S., & Doddamani, S. (2024). Investigation of mechanical properties of luffa fibre reinforced natural rubber composites: implications of process parameters.
50 Sareena, C., Ramesan, M. T., & Purushothaman, E. (2012). Utilization of coconut shell powder as a novel filler in natural rubber.