Biocomposite films utilizing sugar cane bagasse and banana peel aiming seedling applications
Thiago Torres Matta Neves; Simone Taguchi Borges; Luiz Antonio Borges Junior; Edla Maria Bezerra Lima; Cristiane Hess de Azevedo Meleiro; Ana Paula Duarte Moreira; Antonieta Middea; Renata Nunes Oliveira
Abstract
Keywords
References
1 Lima, E. M. B., Middea, A., Reis, F. S., Mateus, D. N., Amorim, R. G., Pereira, I. C. S., Santos, N. R. R., Mattos, M. C., Minguita, A. P. S., Anjos, M. R., Neumann, R., Oliveira, R. N., & Tavares, M. I. B. (2024). Influence of the microstructure in the biodegradability process of eco-friendly materials based on polylactic acid and mango seed for food packaging to minimize microplastic generation.
2 Cazón, P., Velazquez, G., & Vázquez, M. (2019). Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: mechanical and barrier properties.
3 Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review.
4 Nascimento, J., Leite, K., & Gomes, K. (2024). Biodegradable containers made from mesquite pods Prosopis juliflora (Sw.) DC for the production of plant seedlings.
5 Dilkushi, H. A. S., Jayarathna, S., Manipura, A., Chamara, H. K. B. S., Edirisinghe, D., Vidanarachchi, J. K., & Priyashantha, H. (2024). Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly(vinyl alcohol): A sustainable packaging alternative.
6 Duquette, D., & Dumont, M.-J. (2019). Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels.
7 Croitoru, C., Pop, M. A., Bedo, T., Cosnita, M., Roata, I. C., & Hulka, I. (2020). Physically Crosslinked Poly (Vinyl Alcohol)/Kappa-Carrageenan Hydrogels: structure and applications.
8 Mittal, A., Garg, S., & Bajpai, S. (2020). Fabrication and characteristics of poly (vinyl alcohol)-starch-cellulosic material based biodegradable composite film for packaging application.
9 Julinová, M., Vaňharová, L., & Jurča, M. (2018). Water-soluble polymeric xenobiotics – Polyvinyl alcohol and polyvinylpyrrolidon – And potential solutions to environmental issues: a brief review.
10 Sarebanha, S., & Farhan, A. (2018). Eco-friendly composite films based on polyvinyl alcohol and jackfruit waste flour.
11 Chiellini, E., Corti, A., & Solaro, R. (1999). Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions.
12 Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl alcohol) based materials.
13 Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites.
14 Varghese, S. A., Pulikkalparambil, H., Rangappa, S. M., Siengchin, S., & Parameswaranpillai, J. (2020). Novel biodegradable polymer films based on poly(3hydroxybutyrate-co-3-hydroxyvalerate) and
15 Moorthy, M. K. M., Gurusamy, S., Pandiarajan, B., Balasubramanian, B., Pandiarajan, N., Suyambulingam, I., Rangappa, S. M., & Siengchin, S. (2024). Effect of alkali-treated
16 Moretti, M. M. S., Bocchini-Martins, D. A., Nunes, C. C. C., Villena, M. A., Perrone, O. M., Silva, R., Boscolo, M., & Gomes, E. (2014). Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis.
17 Kumar, R., Verma, D., Singh, B. L., Kumar, U., & Shweta, K. M. (2010). Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting.
18 Wu, J., Du, X., Yin, Z., Xu, S., Xu, S., & Zhang, Y. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films.
19 Irvin, C. W., Satam, C. C., Meredith, J. C., & Shofner, M. L. (2019). Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals.
20 Andrade, B. A., Perius, D. B., Mattos, N. V., Luvielmo, M. M., & Mellado, M. S. (2018). Production of unripe banana flour (
21 Castelo-Branco, V. N., Guimarães, J. N., Souza, L., Guedes, M. R., Silva, P. M., Ferrão, L. L., Miyahira, R. F., Guimarães, R. R., Freitas, S. M. L., Reis, M. C., & Zago, L. (2017). The use of green banana (
22 Arquelau, P. B. F., Silva, V. D. M., Garcia, M. A. V. T., Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour.
23 Pitak, N., & Rakshit, S. K. (2011). Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables.
24 Maiti, S., Ray, D., Mitra, D., & Mukhopadhyay, A. (2013). Isolation and characterisation of starch/polyvinyl alcohol degrading fungi from aerobic compost environment.
25 Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review.
26 Elgharbawy, A. S., El Demerdash, A.-G. M., Sadik, W. A., Kasaby, M. A., Lotfy, A. H., & Osman, A. I. (2024). Synthetic degradable polyvinyl alcohol polymer and its blends with starch and cellulose - A comprehensive overview.
27 Yue, H., Li, X., Mai, L., Wu, Q., He, M., Yin, G., Peng, J., Yang, C., & Guo, J. (2024). Sustainable cottonseed protein bioplastics: physical and chemical reinforcement, and plant seedling growth application.
28 Spiridon, I., Popescu, M. C., Bodârlău, R., & Vasile, C. (2008). Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch.
29 Ayyubi, S. N., Purbasari, A., & Kusmiyati, (2022). The effect of composition on mechanical properties of biodegradable plastic based on chitosan/cassava starch/PVA/crude glycerol: optimization of the composition using box behnken design.
30 Hu, Y., Wang, Q., & Tang, M. (2013). Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film.
31 Santos, L. A., Jr, Thiré, R. M. S. M., Lima, E. M. B., Racca, L. M., & Silva, A. L. N. (2018). Mechanical and thermal properties of environment friendly composite based on mango’s seed shell and high-density polyethylene.
32 Moubarik, A., & Grimi, N. (2015). Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution.
33 Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N.-S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber.
34 Mahindrakar, K. V., & Rathod, V. K. (2018). Utilization of banana peels for removal of strontium (II) from water.
35 Ramírez-Hernández, A., Aparicio-Saguilán, A., Reynoso-Meza, G., & Carrillo-Ahumada, J. (2017). Multi-objective optimization of process conditions in the manufacturing of banana (
36 Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. A., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (
37 Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., & Mansur, H. S. (2006). Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption.
38 Gaidukov, S., Danilenko, I., & Gaidukova, G. (2015). Characterization of strong and crystalline polyvinyl alcohol/montmorillonite films prepared by layer-by-layer deposition method.
39 Awada, H., & Daneault, C. (2015). Chemical modification of poly(vinyl alcohol) in water.
40 Alhosseini, S. N., Moztarzadeh, F., Mozafari, M., Asgari, S., Dodel, M., Samadikuchaksaraei, A., Kargozar, S., & Jalali, N. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering.
41 Daniliuc, L., & David, C. (1996). Intermolecular interactions in blends of poly(vinyl alcohol) with poly(acrylic acid): 2. Correlation between the states of sorbed water and the interactions in homopolymers and their blends.
42 Gohil, J. M., Bhattacharya, A., & Ray, P. (2006). Studies on the crosslinking of poly (vinyl alcohol).
43 Bhargav, P. B., Mohan, V. M., Sharma, A. K., & Rao, V. V. R. N. (2008). Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications.
44 Bilba, K., & Ouensanga, A. (1996). Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse.
45 Bagali, S. S., Gowrishankar, B. S., & Roy, A. S. (2017). Optimization, kinetics, and equilibrium studies on the removal of lead(II) from an aqueous solution using banana pseudostem as an adsorbent.
46 Benítez, A. N., Monzón, M. D., Angulo, I., Ortega, Z., Hernández, P. M., & Marrero, M. D. (2013). Treatment of banana fiber for use in the reinforcement of polymeric matrices.
47 Vilardi, G., Di Palma, L., & Verdone, N. (2018). Heavy metals adsorption by banana peels micro-powder: equilibrium modeling by non-linear models.
48 Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2013). Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite.
49 Aarstad, O., Heggset, E. B., Pedersen, I. S., Bjørnøy, S. H., Syverud, K., & Strand, B. L. (2017). Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils.
50 Ooi, Z. X., Ismail, H., & Teoh, Y. P. (2018). Characterization and properties of biodegradable polymer film composites based on polyvinyl alcohol and tropical fruit waste flour. In S.M. Sapuan, H. Ismail, & E.S. Zainudin (Eds.),
51 Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: a mixture design approach.
52 Debiagi, F., Kobayashi, R. K. T., Nakazato, G., Panagio, L. A., & Mali, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils.
53 Sruthimol, J. J., Haritha, K., Warrier, A. S., Nandhu Lal, A. M., Harikrishnan, M. P., Rahul, C. J., & Kothakota, A. (2025). Tailoring the properties of natural fibre biocomposite using chitosan and silk fibroin coatings for eco-friendly packaging.
54 Lani, N. S., Ngadi, N., Johari, A., & Jusoh, M. (2014). Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites.
55 Kenawy, E.-R., Kamoun, E. A., Mohy Eldin, M. S., & El-Meligy, M. A. (2014). Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications.
56 Montes, L. F. S., Melaj, M. A., Lorenzo, M. C., Ribba, L., & Garcia, M. A. (2024). Biodegradable composite materials based on cassava starch and reinforced with topinambur (
57 Sasimowski, E., Grochowicz, M., Janczak, K., Nurzyńska, A., & Belcarz-Romaniuk, A. (2025). Investigation of biodegradation, artificial aging and antibacterial properties of poly(butylene succinate) biocomposites with onion peels and wheat bran.
58 Zobel, H. F. (1988). Molecules to granules: a comprehensive starch review.
59 Rogojanu, A., Rusu, E., Olaru, N., Dobromir, M., & Dorohoi, D. O. (2011). Development and characterization of poly(vinyl alcohol) matrix for drug release.
60 Chen, M.-J., Zhang, X.-Q., Matharu, A., Melo, E., Li, R.-M., Liu, C.-F., & Shi, Q.-S. (2017). Monitoring the crystalline structure of sugar cane bagasse in aqueous ionic liquids.
61 Pająk, J., Ziemski, M., & Nowak, B. (2010). Poly(vinyl alcohol): biodegradable vinyl material.
62 Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019). Agricultural soil characterization by FTIR spectroscopy at micrometer scales: depth profiling by photoacoustic spectroscopy.
63 Margenot, A. J., Calderón, F. J., Goyne, K. W., Mukome, F. N. D., & Parikh, S. J. (2017). IR spectroscopy, soil analysis applications. In J. C. Lindon, G. E. Tranter, & D. W. Koppenaal (Eds.),
64 Arancibia, M. Y., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2014). Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil.
65 Duarte, M. A. T., Duek, E. A. R., & Motta, A. C. (2014). In vitro degradation of poly (L-co-D,L lactic acid) containing PCL-T.
66 Borrelli, N., Alvarez, M. F., Osterrieth, M. L., & Marcovecchio, J. E. (2010). Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina: a preliminary study.
67 Norsuraya, S., Fazlena, H., & Norhasyimi, R. (2016). Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara amorphous-15 (SBA-15).