Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20240101
Polímeros: Ciência e Tecnologia
Review Article

Development of Polyhydroxybutyrate (PHB) production articles: a bibliometric analysis (1990-2023)

Kharis Yohan Abidin; Abdullah; Yeyen Nurhamiyah; Dewi Nandyawati; Hadiyanto; Istadi

Downloads: 1
Views: 27

Abstract

Since the 1940s, the rise in plastic manufacturing has led to increasing plastic waste and environmental damage, driving the need for biodegradable plastics like polyhydroxybutyrate (PHB). PHB is sustainably produced through microbial fermentation using agricultural and industrial waste and is applied in packaging, agriculture, biomedicine, and 3D printing due to its biodegradability and biocompatibility. Advances from 1990 to 2023 include optimized genetic engineering in bacterial strains like Cupriavidus necator, low-cost feedstocks such as molasses, and scalable bioreactor designs for efficient large-scale production. Mixed microbial cultures in wastewater treatment plants exemplify innovations that combine PHB production with pollution mitigation. A bibliometric analysis of Science Direct highlights China’s leading role in PHB research, evidenced by the highest publication and citation rates. This study enhances the literature by revealing significant trends and advancements in PHB development.

 

 

Keywords

biodegradable, plastics, polyhydroxybutyrate, bibliometric

References

1 Bhatia, S. K., Otari, S. V., Jeon, J.-M., Gurav, R., Choi, Y.-K., Bhatia, R. K., Pugazhendhi, A., Kumar, V., Banu, J. R., Yoon, J.-J., Choi, K.-Y., & Yang, Y.-H. (2021). Biowaste to bioplastic (polyhydroxyalkanoates): conversion technologies, strategies, challenges, and perspective. Bioresource Technology, 326, 124733. http://doi.org/10.1016/j.biortech.2021.124733. PMid:33494006.

2 Rinanda, R., Sun, Y., Chang, K., Sulastri, R., Cui, X., Cheng, Z., Yan, B., & Chen, G. (2023). Plastic waste management: a bibliometric analysis (1992-2022). Sustainability, 15(24), 16840. http://doi.org/10.3390/su152416840.

3 Bellasi, A., Binda, G., Pozzi, A., Galafassi, S., Volta, P., & Bettinetti, R. (2020). Microplastic contamination in freshwater environments: a review, focusing on interactions with sediments and benthic organisms. Environments, 7(4), 30. http://doi.org/10.3390/environments7040030.

4 Li, C., Busquets, R., & Campos, L. C. (2020). Assessment of microplastics in freshwater systems: a review. The Science of the Total Environment, 707, 135578. http://doi.org/10.1016/j.scitotenv.2019.135578. PMid:31784176.

5 Xu, S., Ma, J., Ji, R., Pan, K., & Miao, A.-J. (2020). Microplastics in aquatic environments: occurrence, accumulation, and biological effects. The Science of the Total Environment, 703, 134699. http://doi.org/10.1016/j.scitotenv.2019.134699. PMid:31726297.

6 Patil, T. D., Ghosh, S., Agarwal, A., Patel, S. K. S., Tripathi, A. D., Mahato, D. K., Kumar, P., Slama, P., Pavlik, A., & Haque, S. (2024). Production, optimization, scale-up, and characterization of polyhydroxyalkanoate copolymers utilizing dairy processing waste. Scientific Reports, 14(1), 1620. http://doi.org/10.1038/s41598-024-52098-0. PMid:38238404.

7 Cardozo, J. R. G., Bucheli, R. V., Pareja, N. M., Villadiego, O. S. R., Londoño, G. A. C., & Martínez, A. L. M. (2020). Fed-batch production and characterization of polyhydroxybutyrate by Bacillus megaterium LVN01 from residual glycerol. Dyna, 87(214), 111-120. http://doi.org/10.15446/dyna.v87n214.83523.

8 Lee, J., Park, H. J., Moon, M., Lee, J.-S., & Min, K. (2021). Recent progress and challenges in microbial polyhydroxybutyrate (PHB) production from CO2 as sustainable feedstock: a state-of-the-art review. Bioresource Technology, 339, 125616. http://doi.org/10.1016/j.biortech.2021.125616. PMid:34304096.

9 Kasavan, S., Yusoff, S., Fakri, M. F. R., & Siron, R. (2021). Plastic pollution in water ecosystems: a bibliometric analysis from 2000 to 2020. Journal of Cleaner Production, 313, 127946. http://doi.org/10.1016/j.jclepro.2021.127946.

10 Khatun, R., Xiang, H., Yang, Y., Wang, J., & Yildiz, G. (2021). Bibliometric analysis of research trends on the thermochemical conversion of plastics during 1990–2020. Journal of Cleaner Production, 317, 128373. http://doi.org/10.1016/j.jclepro.2021.128373.

11 Armenise, S., SyieLuing, W., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., Rams, J., & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158(2), 105265. http://doi.org/10.1016/j.jaap.2021.105265.

12 Akinpelu, E. A., & Nchu, F. (2022). A bibliometric analysis of research trends in biodegradation of plastics. Polymers, 14(13), 2642. http://doi.org/10.3390/polym14132642. PMid:35808687.

13 Yang, S.-S., Wu, W.-M., Pang, J.-W., He, L., Ding, M.-Q., Li, M.-X., Zhao, Y.-L., Sun, H.-J., Xing, D.-F., Ren, N.-Q., Yang, J., Criddle, C. S., & Ding, J. (2023). Bibliometric analysis of publications on biodegradation of plastics: Explosively emerging research over 70 years. Journal of Cleaner Production, 428, 139423. http://doi.org/10.1016/j.jclepro.2023.139423.

14 Nabgan, W., Ikram, M., Alhassan, M., Owgi, A. H. K., Van Tran, T., Parashuram, L., Nordin, A. H., Djellabi, R., Jalil, A. A., Medina, F., & Nordin, M. L. (2023). Bibliometric analysis and an overview of the application of non-precious materials for pyrolysis reaction of plastic waste. Arabian Journal of Chemistry, 16(6), 104717. http://doi.org/10.1016/j.arabjc.2023.104717.

15 Japri, N. F., Majid, Z. A., Ghoshal, S. K., Danial, W. H., See, H. H., & Othman, M. Z. (2024). On the versatility of graphene-cellulose composites: An overview and bibliometric assessment. Carbohydrate Polymers, 337(1), 121969. http://doi.org/10.1016/j.carbpol.2024.121969. PMid:38710542.

16 Buele, I., & Guerra, T. (2021). Bibliometric analysis of scientific production on tax evasion in sciencedirect, years 2010 to 2019. Journal of Legal, Ethical and Regulatory, 24(2), 627. Retrieved in 2024, October 12, from https://www.abacademies.org/articles/bibliometric-analysis-of-scientific-production-on-tax-evasion-in-sciencedirect-years-2010-to-2019-10427.html

17 Lim, W. M., Kumar, S., & Donthu, N. (2024). How to combine and clean bibliometric data and use bibliometric tools synergistically: guidelines using metaverse research. Journal of Business Research, 182, 114760. http://doi.org/10.1016/j.jbusres.2024.114760.

18 Van Eck, N. J. (2023). Methodological advances in bibliometric mapping and science (Doctoral thesis). Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands.

19 Van Eck, N. J., & Waltman, L. (2007). Bibliometric mapping of the computational intelligence field. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 15(5), 625-645. http://doi.org/10.1142/S0218488507004911.

20 Van Eck, N. J., Waltman, L., Noyons, E. C. M., & Buter, R. K. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581-596. http://doi.org/10.1007/s11192-010-0173-0. PMid:20234767.

21 Van Eck, N. J., & Waltman, L. (2013). Manual for VOSviewer version 1.5.4. Leiden: Univeristeit Leiden, Erasmus Universiteit Rotterdam. Retrieved in 2024, March 22, from https://www.vosviewer.com/documentation/Manual_VOSviewer_1.5.4.pdf

22 Waaijer, C. J. F., Van Bochove, C. A., & Van Eck, N. J. (2011). On the map: Nature and Science editorials. Scientometrics, 86(1), 99-112. http://doi.org/10.1007/s11192-010-0205-9. PMid:21212822.

23 Luing, W. S., Ren, M. G., Nyakuma, B. B., Ngadi, N., Yinn, W. K., Muñoz Hernández, M., Armenise, S., & Tung, C. C. (2022). Upcycling plastic waste to carbon nanomaterials: a bibliometric analysis (2000-2019). Clean Technologies and Environmental Policy, 24(3), 739-759. http://doi.org/10.1007/s10098-021-02267-w.

24 Arruda, H., Silva, E. R., Lessa, M., Proença, D., Jr., & Bartholo, R. (2022). VOSviewer and Bibliometrix. Journal of the Medical Library Association: JMLA, 110(3), 392-395. http://doi.org/10.5195/jmla.2022.1434. PMid:36589296.

25 Kirby, A. (2023). Exploratory bibliometrics: Using VOSviewer as a preliminary research tool. Publications, 11(1), 10. http://doi.org/10.3390/publications11010010.

26 Yudhanto, S., & Asmiyanto, T. (2021). Metadata research development: a bibliometric study on Science Direct. Library Philosophy and Practice, 5059, 1-11. Retrieved in 2024, October 12, from https://digitalcommons.unl.edu/libphilprac/5059

27 Jaffur, B. N., Kumar, G., & Khadoo, P. (2024). Production and functionalization strategies for superior polyhydroxybutyrate blend performance. International Journal of Biological Macromolecules, 278(Pt 3), 134907. http://doi.org/10.1016/j.ijbiomac.2024.134907. PMid:39173809.

28 Yeo, J. C. C., Muiruri, J. K., Thitsartarn, W., Li, Z., & He, C. (2018). Recent advances in developing biodegradable PHB-based toughening materials: approaches, advantages, and applications. Materials Science and Engineering C, 92, 1092-1116. http://doi.org/10.1016/j.msec.2017.11.006. PMid:30184731.

29 Jiang, X.-R., Yao, Z.-H., & Chen, G.-Q. (2017). Controlling cell volume for efficient PHB production by Halomonas. Metabolic Engineering, 44, 30-37. http://doi.org/10.1016/j.ymben.2017.09.004. PMid:28918285.

30 Chang, K., Tao, J., Fang, C., Li, J., Zhou, W., Wang, X., Yan, B., Zeng, D., & Chen, G. (2022). Evolution of research topics on the Tibetan Plateau environment and ecology from 2000 to 2020: a paper mining. Environmental Science and Pollution Research International, 29(9), 12933-12947. http://doi.org/10.1007/s11356-021-17149-3. PMid:35034301.

31 Rochman, S., Rustaman, N., Ramalis, T. R., Amri, K., Zukmadini, A. Y., Ismail, I., & Putra, A. H. (2024). How bibliometric analysis using VOSviewer based on artificial intelligence data (using ResearchRabbit Data): Explore research trends in hydrology content. ASEAN Journal of Science and Engineering, 4(2), 251-294. http://doi.org/10.17509/ajse.v4i2.71567.

32 Marzi, G., Balzano, M., Caputo, A., & Pellegrini, M. M. (2024). Guidelines for bibliometric-systematic literature reviews: 10 steps to combine analysis, synthesis, and theory development. International Journal of Management Reviews, 27(1), 81-103. http://doi.org/10.1111/ijmr.12381.

33 Swain, D. K. (2013). Journal bibliometric analysis: a case study on Internet Research. Library Philosophy and Practice, 985, 1-22. Retrieved in 2024, October 12, from https://digitalcommons.unl.edu/libphilprac/985

34 Lee, S. Y., Lee, J. S., & Sim, S. J. (2024). Cost-effective production of bioplastic polyhydroxybutyrate via introducing heterogeneous constitutive promoter and elevating acetyl-Coenzyme A pool of rapidly growing cyanobacteria. Bioresource Technology, 394, 130297. http://doi.org/10.1016/j.biortech.2023.130297. PMid:38185449.

35 Kusmayadi, A., Huang, C.-Y., Leong, Y. K., Yen, H.-W., Lee, D.-J., & Chang, J.-S. (2023). Utilizing microalgal hydrolysate from dairy wastewater-grown Chlorella sorokiniana SU-1 as a sustainable feedstock for polyhydroxybutyrate and β-carotene production by engineered Rhodotorula glutinis #100-29. Bioresource Technology, 384, 129277. http://doi.org/10.1016/j.biortech.2023.129277. PMid:37290703.

36 Franco-León, J. J., Arriola-Guevara, E., Suárez-Hernández, L. A., Toriz, G., Guatemala-Morales, G., & Corona-González, R. I. (2021). Influence of supplemented nutrients in tequila vinasses for hydrogen and polyhydroxybutyrate production by photofermentation with Rhodopseudomonas pseudopalustris. Bioresource Technology, 329, 124865. http://doi.org/10.1016/j.biortech.2021.124865. PMid:33639381.

37 Manikandan, N. A., Pakshirajan, K., & Pugazhenthi, G. (2020). A closed-loop biorefinery approach for polyhydroxybutyrate (PHB) production using sugars from carob pods as the sole raw material and downstream processing using the co-product lignin. Bioresource Technology, 307, 123247. http://doi.org/10.1016/j.biortech.2020.123247. PMid:32234592.

38 McAllister, J. T., III, Lennertz, L. L., & Mojica, Z. A. (2021). Mapping a discipline: a guide to using VOSviewer for bibliometric and visual analysis. Science & Technology Libraries, 41(3), 319-348. http://doi.org/10.1080/0194262X.2021.1991547.

39 Hou, J., Gao, C., Guo, L., Nielsen, J., Ding, Q., Tang, W., Hu, G., Chen, X., & Liu, L. (2020). Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metabolic Engineering, 61, 47-57. http://doi.org/10.1016/j.ymben.2020.05.004. PMid:32416271.

40 Wang, L.-J., Jiang, X.-R., Hou, J., Wang, C.-H., & Chen, G.-Q. (2022). Engineering Halomonas bluephagenesis via small regulatory RNAs. Metabolic Engineering, 73, 58-69. http://doi.org/10.1016/j.ymben.2022.06.005. PMid:35738548.

41 Wang, Y., Dao, J., & Chen, G.-Q. (2019). Polyhydroxyalkanoate/polyhydroxybutyrate. In M. Moo-Young (Ed.), Comprehensive biotechnology (3rd ed., Vol. 3, pp. 244-257). Amsterdam: Elsevier. http://doi.org/10.1016/B978-0-444-64046-8.00163-4.

42 Tan, D., Xue, Y.-S., Aibaidula, G., & Chen, G.-Q. (2011). Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 102(17), 8130-8136. http://doi.org/10.1016/j.biortech.2011.05.068. PMid:21680179.

43 Nayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: a review. Cleaner Materials, 11, 100220. http://doi.org/10.1016/j.clema.2024.100220.

44 Preethi, B., Rajesh Banu, J., & Gunasekaran, M. (2023). Simultaneous production of polyhydroxybutyrate and biogas from paper mill sludge through sodium citrate-mediated disperser-induced phase-separated pretreatment. Journal of Water Process Engineering, 56, 104544. http://doi.org/10.1016/j.jwpe.2023.104544.

45 Preethi, Rajesh Banu, J., Kumar, G., & Gunasekaran, M. (2023). Augmentation in polyhydroxybutyrate and biogas production from waste-activated sludge through mild sonication-induced thermo-Fenton disintegration. Bioresource Technology, 369, 128376. http://doi.org/10.1016/j.biortech.2022.128376. PMid:36414138.

46 Liu, J., Zhang, H., Jiang, X., Tremblay, P.-L., & Zhang, T. (2023). An efficient and reusable N-dimethylacetamide/LiCl solvent system for extracting high-purity polyhydroxybutyrate from bacterial biomass. Biochemical Engineering Journal, 192, 108812. http://doi.org/10.1016/j.bej.2023.108812.

47 Feng, L., Yan, J., Jiang, Z., Chen, X., Li, Z., Liu, J., Qian, X., Liu, Z., Liu, G., Liu, C., Wang, Y., Hu, G., Dong, W., & Cui, Z. (2023). Characterization of polyhydroxybutyrate (PHB) synthesized by newly isolated rare actinomycetes Aquabacterium sp. A7-Y. International Journal of Biological Macromolecules, 232, 123366. http://doi.org/10.1016/j.ijbiomac.2023.123366. PMid:36693609.

48 Ren, D., Marusich, L. R., O’Donovan, J., Bakdash, J. Z., Schaffer, J. A., Cassenti, D. N., Kase, S. E., Roy, H. E., Lin, W., & Höllerer, T. (2019). Understanding node-link and matrix visualizations of networks: a large-scale online experiment. Network Science, 7(2), 242-264. http://doi.org/10.1017/nws.2019.6.

49 Nygaard, D., Yashchuk, O., & Hermida, É. B. (2021). PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions. Journal of Basic Microbiology, 61(9), 825-834. http://doi.org/10.1002/jobm.202100184. PMid:34342882.

50 Dalton, B., Bhagabati, P., De Micco, J., Padamati, R. B., & O’Connor, K. (2022). A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts, 12(3), 319. http://doi.org/10.3390/catal12030319.

51 Sirohi, R., Pandey, J. P., Gaur, V. K., Gnansounou, E., & Sindhu, R. (2020). Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 311, 123536. http://doi.org/10.1016/j.biortech.2020.123536. PMid:32448640.

52 Nath, S. (2024). Biotechnology and biofuels: paving the way towards a sustainable and equitable energy for the future. Discovery Energy, 4(1), 8. http://doi.org/10.1007/s43937-024-00032-w.

53 Sharma, K., Malik, K., Chaudhary, S., Kumar, S., Dhull, N., & Sujeeta. (2022). Polyhydroxybutyrates (PHBs): an eco-friendly alternative to petroleum-based plastics for diminution of their detrimental effects on the environment. International Journal of Agricultural and Applied Sciences, 3(2), 8-18. http://doi.org/10.52804/ijaas2022.322.

54 Miao, C., Humphrey, R. H., & Qian, S. (2017). A meta-analysis of emotional intelligence effects on job satisfaction mediated by job resources and a test of moderators. Personality and Individual Differences, 116, 281-288. http://doi.org/10.1016/j.paid.2017.04.031.

55 Zheng, K., & Wang, X. (2019). Publications on the association between cognitive function and pain from 2000 to 2018: A bibliometric analysis using Citespace. Medical Science Monitor, 25, 8940-8951. http://doi.org/10.12659/MSM.917742. PMid:31762442.

56 Meng, D., Miao, C., Liu, Y., Wang, F., Chen, L., Huang, Z., Fan, X., Gu, P., & Li, Q. (2022). Metabolic engineering for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose and propionic acid in recombinant Escherichia coli. Bioresource Technology, 348, 126786. http://doi.org/10.1016/j.biortech.2022.126786. PMid:35114368.

57 Lin, Z., Zhang, Y., Yuan, Q., Liu, Q., Li, Y., Wang, Z., Ma, H., Chen, T., & Zhao, X. (2015). Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microbial Cell Factories, 14(1), 185. http://doi.org/10.1186/s12934-015-0369-3. PMid:26589676.

58 Aristya, G. R., Lin, Y.-J., Chang, J.-S., Chang, J.-J., & Yen, H.-W. (2022). Polyhydroxybutyrate (PHB) production from crude glycerol by genetic engineering of Rhodotorula glutinis. Bioresource Technology Reports, 18, 101048. http://doi.org/10.1016/j.biteb.2022.101048.

59 Jung, H. J., Kim, S. H., Shin, N., Oh, S.-J., Hwang, J. H., Kim, H. J., Kim, Y.-H., Bhatia, S. K., Jeon, J.-M., Yoon, J.-J., & Yang, Y.-H. (2023). Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel strain, Priestia sp. YH4. International Journal of Biological Macromolecules, 250, 126152. http://doi.org/10.1016/j.ijbiomac.2023.126152. PMid:37558031.

60 Sooksawat, T., Attapong, M., Saengsakun, W., Siripornadulsil, S., & Siripornadulsil, W. (2023). Optimization of polyhydroxybutyrate (PHB) production by Priestia megaterium ASL11 and glycerol and thermoplastic properties of PHB-based films. Biocatalysis and Agricultural Biotechnology, 54, 102951. http://doi.org/10.1016/j.bcab.2023.102951.

61 Zhou, W., Colpa, D. I., Geurkink, B., Euverink, G.-J. W., & Krooneman, J. (2022). The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. The Science of the Total Environment, 811, 152341. http://doi.org/10.1016/j.scitotenv.2021.152341. PMid:34921889.

62 Myshkina, V. L., Nikolaeva, D. A., Makhina, T. K., Bonartsev, A. P., & Bonartseva, G. A. (2008). Effect of growth conditions on the molecular weight of Poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Applied Biochemistry and Microbiology, 44(5), 482-486. http://doi.org/10.1134/S0003683808050050. PMid:18822772.

63 Costa, J. A. V., Moreira, J. B., Lucas, B. F., Braga, V. S., Cassuriaga, A. P. A., & Morais, M. G. (2018). Recent advances and future perspectives of PHB production by cyanobacteria. Industrial Biotechnology, 14(5), 240-256. http://doi.org/10.1089/ind.2018.0017.
 

68a71bcea9539546fe53fe69 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections