Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20240098
Polímeros: Ciência e Tecnologia
Original Article

Superabsorbent hydrogel derived from hide trimming waste

Febriani Purba; Arief Rahmad Maulana Akbar; Agung Cahyo Legowo; Alan Dwi Wibowo; Agung Nugroho; Hairu Suparto; Raihan Sari Afifah

Downloads: 0
Views: 33

Abstract

Superabsorbent hydrogels were produced using a graft copolymerization technique, utilizing hydrolyzed collagen obtained from hide trimming waste and acrylic acid as the monomer. Methylenebisacrylamide (MBA) was employed as a crosslinker. The concentrations of acrylic acid and MBA were systematically optimized to obtain maximum swelling capacity. The maximum swelling capacity was 156 g/g in distilled water. The structure of the superabsorbent was verified using FTIR spectroscopy, and the morphology was identified using SEM. Various salt solutions (NaCl, KCl, MgCl2, and CaCl2) and solutions with pH levels spanning from 1 to 13 were also utilized to evaluate the swelling capacity of hydrogels.

 

Keywords

hydrogels, swelling, graft copolymers, biopolymers, hide trimming waste

References

1 Buchholz, F. L., & Graham, A. T. (Eds.). (1998). Modern superabsorbentt polymer technology. New York: Wiley-VCH.

2 Peppas, L. B., & Harland, R. S. (Eds.). (1990). Absorbent polymer technology. Amsterdam: Elsevier.

3 Dimitrov, M., Lambov, N., Shenkov, S., Dosseva, V., & Baranovski, V. Y. (2003). Hydrogels based on the chemically crosslinked polyacrylic acid: biopharmaceutical characterization. Acta Pharmaceutica, 53(1), 25-31. PMid:14769249.

4 Elbarbary, A. M., El-Rehim, H. A. A., El-Sawy, N. M., Hegazy, E.-S. A., & Soliman, E.-S. A. (2017). Radiation induced crosslinking of polyacrylamide incorporated low molecular weights natural polymers for possible use in the agricultural applications. Carbohydrate Polymers, 176, 19-28. http://doi.org/10.1016/j.carbpol.2017.08.050. PMid:28927598.

5 Deenavarman, M., Lourdusamy, D. K., Thangaselvaba, T., & Venkatesan, K. (2018). Effect of different media incorporated with Pusa hydrogel on growth and watering frequency of potted foliage plant, Arrowhead (Syngonium podophyllum Schott.). Journal of Agricultural Economics, 6(2), 71-76. http://doi.org/10.53911/JAE.2018.6209.

6 Dzinomwa, G. P. T., Wood, C. J., & Hill, D. J. T. (1997). Fine coal dewatering using pH- and temperature-sensitive superabsorbent polymers. Polymers for Advanced Technologies, 8(12), 767-772. http://doi.org/10.1002/(SICI)1099-1581(199712)8:12<767::AID-PAT717>3.0.CO;2-G.

7 Sun, X., Zhang, G., Shi, Q., Tang, B., & Wu, Z. (2002). Study on foaming water-swellable EPDM rubber. Journal of Applied Polymer Science, 86(14), 3712-3717. http://doi.org/10.1002/app.11381.

8 Park, J. H., & Kim, D. (2001). Preparation and characterization of water-swellable natural rubbers. Journal of Applied Polymer Science, 80(1), 115-121. http://doi.org/10.1002/1097-4628(20010404)80:1<115::AID-APP1079>3.0.CO;2-K.

9 Dorkoosh, F. A., Brussee, J., Verhoef, J. C., Borchard, G., Rafiee-Tehrani, M., & Junginger, H. E. (2000). Preparation and NMR characterization of superporous hydrogels (SPH) and SPH composites. Polymer, 41(23), 8213-8220. http://doi.org/10.1016/S0032-3861(00)00200-7.

10 Chen, J., & Park, K. (2000). Synthesis and characterization of superporous hydrogel composites. Journal of Controlled Release, 65(1-2), 73-82. http://doi.org/10.1016/S0168-3659(99)00238-2. PMid:10699272.

11 Jensen, O. M., & Hansen, P. F. (2002). Water-entrained cement-based materials. Cement and Concrete Research, 32(6), 973-978. http://doi.org/10.1016/S0008-8846(02)00737-8.

12 Dušek, K., & Patterson, D. (1968). Transition in swollen polymer networks induced by intramolecular condensation. Journal of Polymer Science. Part A-2, Polymer Physics, 6(7), 1209-1216. http://doi.org/10.1002/pol.1968.160060701.

13 Tanaka, T. (1978). Collapse of gels and the critical end point. Physical Review Letters, 40(12), 820-823. http://doi.org/10.1103/PhysRevLett.40.820.

14 Savaş, H., & Güven, O. (2001). Investigation of active substance release from poly(ethylene oxide) hydrogels. International Journal of Pharmaceutics, 224(1-2), 151-158. http://doi.org/10.1016/S0378-5173(01)00745-1. PMid:11472824.

15 Lionetto, F., Sannino, A., Mensitieri, G., & Maffezzoli, A. (2003). Evaluation of the degree of cross-linking of cellulose-based superabsorbentt hydrogels: a comparison between different techniques. Macromolecular Symposia, 200(1), 199-208. http://doi.org/10.1002/masy.200351020.

16 Guo, M., Liu, M., Zhan, F., & Wu, L. (2005). Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Industrial & Engineering Chemistry Research, 44(12), 4206-4211. http://doi.org/10.1021/ie0489406.

17 Han, X., Chen, S., & Hu, X. (2009). Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination, 240(1-3), 21-26. http://doi.org/10.1016/j.desal.2008.01.047.

18 Ibrahim, S., Nawwar, G. A. M., & Sultan, M. (2016). Development of bio-based polymeric hydrogel: green, sustainable and low cost plant fertilizer packaging material. Journal of Environmental Chemical Engineering, 4(1), 203-210. http://doi.org/10.1016/j.jece.2015.10.028.

19 Wu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers, 72(2), 240-247. http://doi.org/10.1016/j.carbpol.2007.08.020.

20 Sadeghi, M., Ghasemi, N., & Kazemi, M. (2012). Synthesis and swelling behavior of carrageenans-graft-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. World Applied Sciences Journal, 16(1), 113-118. Retrieved in 2024, October 11, from https://www.idosi.org/wasj/wasj16(1)12/17.pdf

21 Rathna, G. V. N., & Damodaran, S. (2001). Swelling behavior of protein-based superabsorbentt hydrogels treated with ethanol. Journal of Applied Polymer Science, 81(9), 2190-2196. http://doi.org/10.1002/app.1655.

22 Purba, F., Suparno, O., Rusli, M. S., & Fatimah, I. (2023). Novel method of hydrolysed collagen extraction from hide trimming waste. International Food Research Journal, 30(2), 365-374. http://doi.org/10.47836/ifrj.30.2.08.

23 Pourjavadi, A., Kurdtabar, M., Mahdavinia, G. R., & Hosseinzadeh, H. (2006). Synthesis and super-swelling behavior of a novel protein-based superabsorbentt hydrogel. Polymer Bulletin, 57(6), 813-824. http://doi.org/10.1007/s00289-006-0649-5.

24 Pourjavadi, A., & Kurdtabar, M. (2007). Collagen-based highly porous hydrogel without any porogen: sytnthesis and characteristic. European Polymer Journal, 43(3), 877-889. http://doi.org/10.1016/j.eurpolymj.2006.12.020.

25 Marandi, G. B., Mahdavinia, G. R., & Ghafary, S. (2011). Swelling behavior of novel protein-based superabsorbentt nanocomposite. Journal of Applied Polymer Science, 120(2), 1170-1179. http://doi.org/10.1002/app.33016.

26 Okieimen, F. E. (2003). Preparation, characterization and properties of cellulose-polyacrylamide graft copolymers. Journal of Applied Polymer Science, 89(4), 913-923. http://doi.org/10.1002/app.12014.

27 Sadeghi, M., Soleimani, F., & Yarahmadi, M. (2011). Chemical modification of carboxymethyl cellulose via graft copolymerization and determination of the grafting parameters. Oriental Journal of Chemistry, 27(3), 967-972. Retrieved in 2024, October 11, from http://www.orientjchem.org/vol27no3/chemical-modification-of-carboxymethyl-cellulose-via-graft-copolymerization-and-determination-of-the-grafting-parameters/

28 House, D. A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 62(3), 185-203. http://doi.org/10.1021/cr60217a001.

29 Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78(1), 929-958. http://doi.org/10.1146/annurev.biochem.77.032207.120833. PMid:19344236.

30 Knott, L., & Bailey, A. J. (1998). Collagen cross-link in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone, 22(3), 181-187. http://doi.org/10.1016/S8756-3282(97)00279-2. PMid:9514209.

31 Arunbabu, D., Shahsavan, H., Zhang, W., & Zhao, B. (2013). Poly(AAc-co-MBA) hydrogel films; adhesive and mechanical properties in aqueous medium. The Journal of Physical Chemistry B, 117(1), 441-449. http://doi.org/10.1021/jp3101688.

32 Peppas, N. A. (Ed.). (1986). Hydrogels in medicine and pharmacy. Boca Raton: CRC Press.

33 Flory, P. J. (1953). Principles of polymer chemistry. New York: Cornell University Press.

34 Lanzalaco, S., Del Valle, L. J., Turon, P., Weis, C., Estrany, F., Aleman, C., & Armelin, E. (2020). Polypropylene mesh for hernia repair with controllable cell adhesion/de-adhesion properties. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 8(5), 1049-1059. http://doi.org/10.1039/C9TB02537E. PMid:31939983.

35 Sadeghi, M., & Hosseinzadeh, H. (2013). Synthesis and properties of collagen-g-poly(sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Brazilian Journal of Chemical Engineering, 30(2), 379-389. http://doi.org/10.1590/S0104-66322013000200015.

36 Sadeghi, M., & Yarahmadi, M. (2011). Synthesis of a novel pH- and salt-responsive super absorbent hydrogel based on collagen-g-poly(AA-co-IA). Oriental Journal of Chemistry, 27(2), 453-460. Retrieved in 2024, October 11, from https://www.orientjchem.org/pdf/vol27no2/OJC_Vol27_No2_p_453-460.pdf

37 Pourjavadi, A., Hosseinzadeh, H., & Sadeghi, M. (2007). Synthesis, characterization and swelling behavior of gelatin-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. Journal of Composite Materials, 41(17), 2057-2069. http://doi.org/10.1177/0021998307074125.

38 Wu, J., Wei, Y., Lin, J., & Lin, S. (2003). Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer, 44(21), 6513-6520. http://doi.org/10.1016/S0032-3861(03)00728-6.

39 Yoshimura, T., Uchikoshi, I., Yoshiura, Y., & Fujioka, R. (2005). Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride. Carbohydrate Polymers, 61(3), 322-326. http://doi.org/10.1016/j.carbpol.2005.06.014.

40 Zhang, J., Wang, Q., & Wang, A. (2007). Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydrate Polymers, 68(2), 367-374. http://doi.org/10.1016/j.carbpol.2006.11.018.

41 Pourjavadi, A., Salimi, H., & Kurdtabar, M. (2007). Hydrolyzed collagen-based hydrogel with salt and pH-responsiveness properties. Journal of Applied Polymer Science, 106(4), 2371-2379. http://doi.org/10.1002/app.26682.

42 Pourjavadi, A., Kurdtabar, M., & Ghasemzadeh, H. (2008). Salt- and pH-resisting collagen-based highly porous hydrogel. Polymer Journal, 40(2), 94-103. http://doi.org/10.1295/polymj.PJ2007042.

43 Pourjavadi, A., & Salimi, H. (2008). New protein-based hydrogel with superabsorbing properties: effect of monomer ratio on swelling behavior and kinetics. Industrial & Engineering Chemistry Research, 47(23), 9206-9213. http://doi.org/10.1021/ie8002478.

44 Sadeghi, M., & Hosseinzadeh, H. (2010). Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbentt hydrogel: collagen-g-poly(AMPS). Turkish Journal of Chemistry, 34(5), 5. .

45 Saarai, A., Kasparkova, V., Sedlacek, T., & Saha, P. (2011). A comparative study of crosslinked sodium alginate/gelatin hydrogels for wound dressing. In Proceedings of the 4th WSEAS international conference on Energy and development - environment - biomedicine (GEMESED'11) (pp. 384-389). Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS).

46 Sadeghi, M., & Ghasemi, N. (2012). Synthesis and study on effect of various chemical conditions on the swelling property of collagen- g -poly(AA- co -IA) superabsorbent hydrogel. Indian Journal of Science and Technology, 5(1), 1-6. http://doi.org/10.17485/ijst/2012/v5i1.11.

47 Pourjavadi, A., Salimi, H., Amini-Fazl, M. S., Kurdtabar, M., & Amini-Fazl, A. R. (2006). Optimization of synthetic conditions of a novel collagen-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. Journal of Applied Polymer Science, 102(5), 4878-4885. http://doi.org/10.1002/app.24860.

48 Wang, Y., Shi, X., Wang, W., & Wang, A. (2013). Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly(AA-co-AMPS) superabsorbent hydrogel. Turkish Journal of Chemistry, 37(1), 11. .

49 Lee, W.-F., & Yuan, W.-Y. (2000). Thermoreversible hydrogels X: synthesis and swelling behavior of the (N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate) copolymeric hydrogels. Journal of Applied Polymer Science, 77(8), 1760-1768. http://doi.org/10.1002/1097-4628(20000822)77:8<1760::AID-APP13>3.0.CO;2-J.

50 Athawale, V. D., & Vidyagauri, V. L. (1998). Graft copolymerization onto starch. 3: grafting of acrylamide using ceric ion initiation and preparation of its hydrogels. Stärke, 50(10), 426-431. http://doi.org/10.1002/(SICI)1521-379X(199810)50:10<426::AID-STAR426>3.0.CO;2-#.

51 Sadeghi, M., Hamzeh, A., D’Amore, A., Acierno, D., & Grassia, L. (2008). Novel crosslinked graft copolymer of methacrylic acid and collagen as a protein‐based superabsorbent hydrogel with salt and ph‐responsiveness properties. AIP Conference Proceedings, 1042(1), 348-350. http://doi.org/10.1063/1.2989060.

52 Lee, W.-F., & Wu, R.-J. (1996). Superabsorbent polymeric materials. I. Swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution. Journal of Applied Polymer Science, 62(7), 1099-1114. http://doi.org/10.1002/(SICI)1097-4628(19961114)62:7<1099::AID-APP16>3.0.CO;2-1.

53 Marandi, G. B., Hariri, S., & Mahdavinia, G. R. (2009). Effect of hydrophobic monomer on the synthesis and swelling behaviour of a collagen-graft-poly[(acrylic acid)-co-(sodium acrylate)] hydrogel. Polymer International, 58(2), 227-235. http://doi.org/10.1002/pi.2520.

54 Park, S.-E., Nho, Y.-C., Lim, Y.-M., & Kim, H.-I. (2004). Preparation of pH-sensitive poly(vinyl alcohol-g-methacrylic acid) and poly(vinyl alcohol-g-acrylic acid) hydrogels by gamma ray irradiation and their insulin release behavior. Journal of Applied Polymer Science, 91(1), 636-643. http://doi.org/10.1002/app.13211.

55 Pourjavadi, A., Sadeghi, M., & Hosseinzadeh, H. (2004). Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polymers for Advanced Technologies, 15(11), 645-653. http://doi.org/10.1002/pat.524.

56 Pourjavadi, A., Amini-Fazl, M. S., & Hosseinzadeh, H. (2005). Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive Properties. Macromolecular Research, 13(1), 45-53. http://doi.org/10.1007/BF03219014.

57 Xu, S., Li, X., Wang, Y., Hu, Z., & Wang, R. (2019). Characterization of slow-release collagen-g-poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)–iron(III) superabsorbent polymer containing fertilizer. Journal of Applied Polymer Science, 136(11), 47178. http://doi.org/10.1002/app.47178.

58 Álvarez-Castillo, E., Bengoechea, C., Felix, M., & Guerrero, A. (2021). Freeze-drying versus heat-drying: effect on protein-based superabsorbent material. Processes, 9(6), 1076. http://doi.org/10.3390/pr9061076.

59 Kabiri, K., Omidian, H., & Zohuriaan-Mehr, M. (2003). Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate. Polymer International, 52(7), 1158-1164. http://doi.org/10.1002/pi.1218.
 

68a71a9ea95395471429ce75 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections