Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20240089
Polímeros: Ciência e Tecnologia
Original Article

Contemporary methods of industrial composite material production technology

Andrii Bieliatynskyi; Olena Bakulich; Viacheslav Trachevskyi; Mingyang Ta

Downloads: 0
Views: 30

Abstract

Composite materials have emerged as a viable alternative to metals due to their lighter weight and superior mechanical properties; however, due to the trade-off between performance and cost, they have yet to gain widespread adoption. Despite environmental legislation constantly being updated, producers of various equipment and structures are hesitant to incorporate composite technologies into standard constructions and products, primarily for economic reasons. As a consequence, recent advancements in composite-producing processes have focused on the usage of carbon composites and automated robotics incorporation for ecologically conscious, stable, and affordable production. Therefore, it is essential to investigate current methodologies for industrial carbon composite material production and manufacturing processes to determine the most optimal composite production and implementation criteria.

 

Keywords

binders, composite materials, fibrous filler, carbon nanotubes

References

1 Restuccia, K. L., Hobisch, G., Jacobs, V., & Ponsolle, D. (2020). US Patent No 10,655,006. Washington: U.S. Patent and Trademark Office. Retrieved in 2024, October 28, from https://patentimages.storage.googleapis.com/de/1a/82/cf74605bde8653/US10655006.pdf

2 Bieliatynskyi, A., Yang, S., Pershakov, V., Shao, M., & Ta, M. (2023). Study of concrete properties based on crushed stone sand mixture and fibre of fly ash of thermal power plants. Science and Engineering of Composite Materials, 29(1), 412-426. http://doi.org/10.1515/secm-2022-0167.

3 Grand View Research. (2023). Composites market size, share & trends analysis report by product type (carbon fiber, glass fiber), by manufacturing process (layup, filament, injection molding, pultrusion), by end-use, by region and segment forecasts, 2023-2030. San Francisco, CA: Grand View Research. Retrieved in 2024, October 28, from https://www.grandviewresearch.com/industry-analysis/composites-market

4 Yang, S., Bieliatynskyi, A., Trachevskyi, V., Shao, M., & Ta, M. (2022). Technological aspects of the preparation of polymer composites of building materials and coatings. Polymers & Polymer Composites, 30. http://doi.org/10.1177/09673911221135690.

5 Murray, R. E., Beach, R., Barnes, D., Snowberg, D., Berry, D., Rooney, S., Jenks, M., Gage, B., Boro, T., Wallen, S., & Hughes, S. (2021). Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade. Renewable Energy, 164, 1100-1107. http://doi.org/10.1016/j.renene.2020.10.040.

6 Wu, W., Jiang, B., Xie, L., Klunker, F., Aranda, S., & Ziegmann, G. (2013). Effect of compaction and preforming parameters on the compaction behavior of bindered textile preforms for automated composite manufacturing. Applied Composite Materials, 20(5), 907-926. http://doi.org/10.1007/s10443-012-9308-1.

7 Fan, Z., Tang, W., Hsiao, K.-T., & Advani, S. G. (2004). Flow and dispersion of multi-walled carbon nanotubes in polymer and fiberglass reinforced polymer composites. In Proceedings of the NSF Design, Service and Manufacturing Grantees and Research Conference. Dallas, TX: National Science Foundation.

8 Ponsolle, D., Restuccia, K. L., Jacobs, W., Blackburn, R., LoFaro, C., Price, R., Doyle, M., Smith, M., & Roman, M. (2013). WO 2013/096377 A2. Geneva: World Intellectual Property Organization. Retrieved in 2024, October 28, from https://patentimages.storage.googleapis.com/c8/50/0a/0cb4772a1fb96c/WO2013096377A2.pdf

9 Kim, C., Yun, M.-G., Kim, S., & Jeon, G.-W. (2022). Mathematical model to predict the moduli of wet-laid pulp/fibre/resin composite materials. International Journal of Precision Engineering and Manufacturing, 23(11), 1315-1324. http://doi.org/10.1007/s12541-022-00700-8.

10 Biron, M. (2018). Thermoplastics and thermoplastic composites. Norwich, UK: William Andrew. http://doi.org/10.1016/C2017-0-01099-6.

11 Bongiorno, F., Militello, C., & Zuccarello, B. (2022). Mode I translaminar fracture toughness of high-performance laminated biocomposites reinforced by sisal fibres: accurate measurement approach and lay-up effects. Composites Science and Technology, 217, 109089. http://doi.org/10.1016/j.compscitech.2021.109089.

12 Giuliani, P. M., Giannini, O., & Panciroli, R. (2022). Characterizing flax fibre-reinforced bio-composites under monotonic and cyclic tensile loading. Composite Structures, 280, 114803. http://doi.org/10.1016/j.compstruct.2021.114803.

13 Inam, F., Wong, D. W. Y., Kuwata, M., & Peijs, T. (2010). Multiscale hybrid micronanocomposites based on carbon nanotubes and carbon fibres. Journal of Nanomaterials, 2010(1), 453420. http://doi.org/10.1155/2010/453420.

14 Kochi, S., Yoshio, K., & Miyoshi, M. (2015). US Patent No 9,062,203. Washington: U.S. Patent and Trademark Office. Retrieved in 2024, October 28, from https://pubchem.ncbi.nlm.nih.gov/patent/US-9062203-B2

15 Liu, Y.-N., Yuan, C., Liu, C., Pan, J., & Dong, Q. (2019). Investigation of the resin infusion process based on automated fiber placement preform. Scientific Reports, 9(1), 7440. http://doi.org/10.1038/s41598-019-43982-1. PMid:31092893.

16 Loeliger, A., Yang, E., & Bomphray, I. (2021). An overview of automated manufacturing for composite materials. In Proceedings of the 26th International Conference on Automation and Computing (ICAC) (pp. 1-6), Portsmouth, UK. New York: IEEE. http://doi.org/10.23919/ICAC50006.2021.9594159.

17 Mei, M., Sun, L., He, Y., Li, M., Duan, S., Wei, K., & Yang, X. (2021). Preforming characteristics in the compaction process for fabric with binder under elevated temperature. Composites Communications, 23, 100545. http://doi.org/10.1016/j.coco.2020.100545.

18 Zhao, X., Copenhaver, K., Wang, L., Korey, M., Gardner, D. J., Li, K., Lamm, M. E., Kishore, V., Bhagia, S., Tajvidi, M., Tekinalp, H., Oyedeji, O., Wasti, S., Webb, E., Ragauskas, A. J., Zhu, H., Peter, W. H., & Ozcan, S. (2022). Recycling of natural fiber composites: challenges and opportunities. Resources, Conservation and Recycling, 177, 105962. http://doi.org/10.1016/j.resconrec.2021.105962.

19 Huang, Y., Li, N., Ma, Y., Du, F., Li, F., He, X., Lin, X., Gao, H., & Chen, Y. (2007). The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon, 45(8), 1614-1621. http://doi.org/10.1016/j.carbon.2007.04.016.

20 Bieliatynskyi, A., Yang, S., Pershakov, V., Shao, M., & Ta, M. (2023). Exploring the use of modern fly ash materials from Chinese power plants in road and airfield infrastructure. Environmental Engineering and Management Journal, 22(3), 527-537. http://doi.org/10.30638/eemj.2023.041.

21 Chandrasekaran, V. C. S., Advani, S. G., & Santare, M. H. (2010). Role of processing on interlaminar shear strength enhancement of epoxy/glass fibre/multi-walled carbon nanotube hybrid composites. Carbon, 48(13), 3692-3699. http://doi.org/10.1016/j.carbon.2010.06.010.

22 Fan, Z., Hsiao, K.-T., & Advani, S. G. (2004a). Experimental investigation of dispersion during the flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media. Carbon, 42(4), 871-876. http://doi.org/10.1016/j.carbon.2004.01.067.

23 Qiu, J., Zhang, C., Wang, B., & Liang, R. (2007). Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 18(27), 275708. http://doi.org/10.1088/0957-4484/18/27/275708.

24 Challa, R. K., Kajfez, D., Demir, V., Gladden, J. R., & Elsherbeni, A. Z. (2008). Characterization of multi-walled carbon nanotube (MWCNT) composites in a waveguide of square cross-section. IEEE Microwave and Wireless Components Letters, 18(3), 161-163. http://doi.org/10.1109/LMWC.2008.916776.

25 Huang, Q., Holland, T. B., Mukherjee, A. K., Chojnacki, E., Liepe, M., Mallory, M., & Tigner, M. (2009). Carbon nanotube RF absorbing materials. In Proceedings of the 14th International Conference on RF Superconductivity (SRF2009) (pp. 648-651). Berlin: Helmholtz-Zentrum Berlin für Materialien und Energie.

26 Lubineau, G., & Rahaman, A. (2012). A review of strategies for improving the degradation properties of laminated continuous-fibre/epoxy composites with carbon-based nanoreinforcements. Carbon, 50(7), 2377-2395. http://doi.org/10.1016/j.carbon.2012.01.059.

27 Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., & Eklund, P. C. (2006). Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Letters, 6(6), 1141-1145. http://doi.org/10.1021/nl0602589. PMid:16771569.

28 De Vivo, B., Guadagno, L., Lamberti, P. R. R., Sarto, M. S., Tamburrano, A., Tucci, V., & Vertuccio, L. (2009, June 11-12). Electromagnetic properties of carbon nanotube/epoxy nanocomposites. In Proceedings of the EMC Europe 2009 Workshop: Materials in EMC Applications (pp. 9-12), Athens, Greece. New York: IEEE. http://doi.org/10.23919/EMC.2009.10814044.
 

68a71f3ea95395492a454408 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections