Contemporary methods of industrial composite material production technology
Andrii Bieliatynskyi; Olena Bakulich; Viacheslav Trachevskyi; Mingyang Ta
Abstract
Keywords
References
1 Restuccia, K. L., Hobisch, G., Jacobs, V., & Ponsolle, D. (2020).
2 Bieliatynskyi, A., Yang, S., Pershakov, V., Shao, M., & Ta, M. (2023). Study of concrete properties based on crushed stone sand mixture and fibre of fly ash of thermal power plants.
3 Grand View Research. (2023).
4 Yang, S., Bieliatynskyi, A., Trachevskyi, V., Shao, M., & Ta, M. (2022). Technological aspects of the preparation of polymer composites of building materials and coatings.
5 Murray, R. E., Beach, R., Barnes, D., Snowberg, D., Berry, D., Rooney, S., Jenks, M., Gage, B., Boro, T., Wallen, S., & Hughes, S. (2021). Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade.
6 Wu, W., Jiang, B., Xie, L., Klunker, F., Aranda, S., & Ziegmann, G. (2013). Effect of compaction and preforming parameters on the compaction behavior of bindered textile preforms for automated composite manufacturing.
7 Fan, Z., Tang, W., Hsiao, K.-T., & Advani, S. G. (2004). Flow and dispersion of multi-walled carbon nanotubes in polymer and fiberglass reinforced polymer composites. In
8 Ponsolle, D., Restuccia, K. L., Jacobs, W., Blackburn, R., LoFaro, C., Price, R., Doyle, M., Smith, M., & Roman, M. (2013).
9 Kim, C., Yun, M.-G., Kim, S., & Jeon, G.-W. (2022). Mathematical model to predict the moduli of wet-laid pulp/fibre/resin composite materials.
10 Biron, M. (2018).
11 Bongiorno, F., Militello, C., & Zuccarello, B. (2022). Mode I translaminar fracture toughness of high-performance laminated biocomposites reinforced by sisal fibres: accurate measurement approach and lay-up effects.
12 Giuliani, P. M., Giannini, O., & Panciroli, R. (2022). Characterizing flax fibre-reinforced bio-composites under monotonic and cyclic tensile loading.
13 Inam, F., Wong, D. W. Y., Kuwata, M., & Peijs, T. (2010). Multiscale hybrid micronanocomposites based on carbon nanotubes and carbon fibres.
14 Kochi, S., Yoshio, K., & Miyoshi, M. (2015).
15 Liu, Y.-N., Yuan, C., Liu, C., Pan, J., & Dong, Q. (2019). Investigation of the resin infusion process based on automated fiber placement preform.
16 Loeliger, A., Yang, E., & Bomphray, I. (2021). An overview of automated manufacturing for composite materials. In
17 Mei, M., Sun, L., He, Y., Li, M., Duan, S., Wei, K., & Yang, X. (2021). Preforming characteristics in the compaction process for fabric with binder under elevated temperature.
18 Zhao, X., Copenhaver, K., Wang, L., Korey, M., Gardner, D. J., Li, K., Lamm, M. E., Kishore, V., Bhagia, S., Tajvidi, M., Tekinalp, H., Oyedeji, O., Wasti, S., Webb, E., Ragauskas, A. J., Zhu, H., Peter, W. H., & Ozcan, S. (2022). Recycling of natural fiber composites: challenges and opportunities.
19 Huang, Y., Li, N., Ma, Y., Du, F., Li, F., He, X., Lin, X., Gao, H., & Chen, Y. (2007). The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites.
20 Bieliatynskyi, A., Yang, S., Pershakov, V., Shao, M., & Ta, M. (2023). Exploring the use of modern fly ash materials from Chinese power plants in road and airfield infrastructure.
21 Chandrasekaran, V. C. S., Advani, S. G., & Santare, M. H. (2010). Role of processing on interlaminar shear strength enhancement of epoxy/glass fibre/multi-walled carbon nanotube hybrid composites.
22 Fan, Z., Hsiao, K.-T., & Advani, S. G. (2004a). Experimental investigation of dispersion during the flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media.
23 Qiu, J., Zhang, C., Wang, B., & Liang, R. (2007). Carbon nanotube integrated multifunctional multiscale composites.
24 Challa, R. K., Kajfez, D., Demir, V., Gladden, J. R., & Elsherbeni, A. Z. (2008). Characterization of multi-walled carbon nanotube (MWCNT) composites in a waveguide of square cross-section.
25 Huang, Q., Holland, T. B., Mukherjee, A. K., Chojnacki, E., Liepe, M., Mallory, M., & Tigner, M. (2009). Carbon nanotube RF absorbing materials. In
26 Lubineau, G., & Rahaman, A. (2012). A review of strategies for improving the degradation properties of laminated continuous-fibre/epoxy composites with carbon-based nanoreinforcements.
27 Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., & Eklund, P. C. (2006). Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites.
28 De Vivo, B., Guadagno, L., Lamberti, P. R. R., Sarto, M. S., Tamburrano, A., Tucci, V., & Vertuccio, L. (2009, June 11-12). Electromagnetic properties of carbon nanotube/epoxy nanocomposites. In