Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20240075
Polímeros: Ciência e Tecnologia
Original Article

Recovery of the post-industrial recycled ABS thermomechanical properties by adding graphene oxide

Lucas Pacanaro de Lima; André Petraconi; Natália Ferreira Braga; Lidiane Cristina Costa; Ricardo Jorge Espanhol Andrade; Guilhermino José Macêdo Fechine

Downloads: 0
Views: 31

Abstract

The post-industrial recycled ABS (ABSpost) was used to produce a new material based on graphene oxide (GO), aimed at high-quality products again, as households and electronic applications. The GO was prepared from the oxidation of graphite, and the influence of the different amounts of filler on the mechanical, rheological, and thermal properties of ABSpost was investigated. The X-ray microtomography showed a uniform dispersion of GO fillers in the ABSpost matrix in small amounts (0.05 and 0.1 wt%), improving some properties, such as elongation at break, toughness, and impact strength. The thermal conductivity of the ABSpost also increases by 30% with the addition of only 0.1 wt% of GO. Adding a small amount of GO in a recycled ABS is a strategy to deal with the current problem of electronic housing waste and use this material to minimize its environmental impact.

 

Keywords

post-consumer ABS, graphene oxide, polymer nanocomposites

References

1 Oliveira, I. M., Gimenez, J. C. F., Xavier, G. T. M., Ferreira, M. A. B., Silva, C. M. P., Camargo, E. R., & Cruz, S. A. (2024). Recycling ABS from WEEE with peroxo-modified surface of titanium dioxide particles: alteration on antistatic and degradation properties. Journal of Polymers and the Environment, 32(3), 1122-1134. http://doi.org/10.1007/s10924-023-03021-7.

2 Vazquez, Y. V., & Barbosa, S. E. (2017). Process window for direct recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from electrical and electronic equipment waste. Waste Management (New York, N.Y.), 59, 403-408. http://doi.org/10.1016/j.wasman.2016.10.021. PMid:27769650.

3 Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: effect of post-consumer content and of reprocessing cycles. European Polymer Journal, 48(3), 637-648. http://doi.org/10.1016/j.eurpolymj.2011.12.018.

4 Saxena, D., & Maiti, P. (2021). Utilization of ABS from plastic waste through single-step reactive extrusion of LDPE/ABS blends of improved properties. Polymer, 221, 123626. http://doi.org/10.1016/j.polymer.2021.123626.

5 Brennan, L. B., Isaac, D. H., & Arnold, J. C. (2002). Recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. Journal of Applied Polymer Science, 86(3), 572-578. http://doi.org/10.1002/app.10833.

6 Wang, J., Li, Y., Song, J., He, M., Song, J., & Xia, K. (2015). Recycling of acrylonitrile-butadiene-styrene (ABS) copolymers from waste electrical and electronic equipment (WEEE), through using an epoxy-based chain extender. Polymer Degradation & Stability, 112, 167-174. http://doi.org/10.1016/j.polymdegradstab.2014.12.025.

7 Mao, N. D., Thanh, T. D., Thuong, N. T., Grillet, A.-C., Kim, N. H., & Lee, J. H. (2016). Enhanced mechanical and thermal properties of recycled ABS/nitrile rubber/nanofil N15 nanocomposites. Composites. Part B, Engineering, 93, 280-288. http://doi.org/10.1016/j.compositesb.2016.03.039.

8 Lee, S. J., Yoon, S. J., & Jeon, I.-Y. (2022). Graphene/polymer nanocomposites: Preparation, mechanical properties, and application. Polymers, 14(21), 4733. http://doi.org/10.3390/polym14214733. PMid:36365726.

9 Trivedi, D. N., & Rachchh, N. V. (2022). Graphene and its application in thermoplastic polymers as nano-filler: A review. Polymer, 240, 124486. http://doi.org/10.1016/j.polymer.2021.124486.

10 Aumnate, C., Pongwisuthiruchte, A., Pattananuwat, P., & Potiyaraj, P. (2018). Fabrication of ABS/graphene oxide composite filament for fused filament fabrication (FFF) 3D printing. Advances in Materials Science and Engineering, 2830437(1), 2830437. http://doi.org/10.1155/2018/2830437.

11 Dul, S., Fambri, L., & Pegoretti, A. (2016). Fused deposition modelling with ABS-graphene nanocomposites. Composites. Part A, Applied Science and Manufacturing, 85, 181-191. http://doi.org/10.1016/j.compositesa.2016.03.013.

12 Waheed, Q., Khan, A. N., & Jan, R. (2016). Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene. Polymer, 97, 496-503. http://doi.org/10.1016/j.polymer.2016.05.070.

13 Lee, S. J., Baek, J., & Jeon, I.-Y. (2024). Preparation and characteristics of decene-functionalized graphitic nanoplatelets/acrylonitrile butadiene styrene hybrid nanocomposites. Polymer, 294, 126727. http://doi.org/10.1016/j.polymer.2024.126727.

14 Du, J., & Cheng, H.-M. (2012). The fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 213(10-11), 1060-1077. http://doi.org/10.1002/macp.201200029.

15 Fu, X., Lin, J., Liang, Z., Yao, R., Wu, W., Fang, Z., Zou, W., Wu, Z., Ning, H., & Peng, J. (2023). Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces, 37, 102747. http://doi.org/10.1016/j.surfin.2023.102747.

16 Shah, R., Kausar, A., Muhammad, B., & Shah, S. (2015). Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: a review. Polymer-Plastics Technology and Engineering, 54(2), 173-183. http://doi.org/10.1080/03602559.2014.955202.

17 Pinto, G. M., Silva, G. C., & Fechine, G. J. M. (2020). Effect of exfoliation medium on the morphology of multi-layer graphene oxide and its importance for poly(ethylene terephthalate)-based nanocomposites. Polymer Testing, 90, 106742. http://doi.org/10.1016/j.polymertesting.2020.106742.

18 Farivar, F., Lay Yap, P., Karunagaran, R. U., & Losic, D. (2021). Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters. Journal of Carbon Research, 7(2), 41. http://doi.org/10.3390/c7020041.

19 Zhang, Z., Schniepp, H. C., & Adamson, D. H. (2019). Characterization of graphene oxide: variations in reported approaches. Carbon, 154, 510-521. http://doi.org/10.1016/j.carbon.2019.07.103.

20 Vorrada, L., Krit, T., Passakorn, E., Wanchai, B., & Achanai, B. (2013). Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Advances in Materials Science and Engineering, 2013(1), 923403. http://doi.org/10.1155/2013/923403.

21 Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145-154. http://doi.org/10.1016/j.elspec.2014.07.003.

22 Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 36-41. http://doi.org/10.1021/nl071822y. PMid:18154315.

23 Muzyka, R., Drewniak, S., Pustelny, T., Chrubasik, M., & Gryglewicz, G. (2018). Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials (Basel), 11(7), 1050. http://doi.org/10.3390/ma11071050. PMid:29933564.

24 Kaniyoor, A., & Ramaprabhu, S. (2012). A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Advances, 2(3), 032183. http://doi.org/10.1063/1.4756995.

25 Prolongo, S. G., Jiménez-Suárez, A., Moriche, R., & Ureña, A. (2014). Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. European Polymer Journal, 53, 292-301. http://doi.org/10.1016/j.eurpolymj.2014.01.019.

26 Kaczmarek, Ł., Warga, T., Makowicz, M., Kyzioł, K., Bucholc, B., & Majchrzycki, Ł. (2020). The influence of the size and oxidation degree of graphene flakes on the process of creating 3D structures during its cross-linking. Materials (Basel), 13(3), 681. http://doi.org/10.3390/ma13030681. PMid:32028708.

27 Ramaraj, B. (2006). Mechanical and thermal properties of ABS and leather waste composites. Journal of Applied Polymer Science, 101(5), 3062-3066. http://doi.org/10.1002/app.24113.

28 Song, P., Cao, Z., Meng, Q., Fu, S., Fang, Z., Wu, Q., & Ye, J. (2012). Effect of lignin incorporation and reactive compatibilization on the morphological, rheological, and mechanical properties of ABS resin. Journal of Macromolecular Science, Part B: Physics, 51(4), 720-735. http://doi.org/10.1080/00222348.2011.609794.

29 Abdelhaleem, A. M. M., Abdellah, M. Y., Fathi, H. I., & Dewidar, M. (2016). Mechanical properties of ABS embedded with basalt fiber fillers. Journal for Manufacturing Science and Production, 16(2), 69-74. http://doi.org/10.1515/jmsp-2016-0006.

30 Khan, M. M. K., Liang, R. F., Gupta, R., & Agarwal, S. (2005). Rheological and mechanical properties of ABS/PC blends. Korea-Australia Rheology Journal, 17(1), 1-7. Retrieved in 2024, July 31, from https://www.researchgate.net/publication/268432181

31 Budin, S., Hyie, K. M., Yussof, H., Ishak, A., & Ginting, R. (2020). Investigation on mechanical properties of blend virgin and recycled acrylonitrile-butadiene-styrene (ABS) in injection molding. Key Engineering Materials, 833, 8-12. http://doi.org/10.4028/www.scientific.net/KEM.833.8.

32 Teixeira, F. S. M., Peres, A. C. C., Gomes, T. S., Visconte, L. L. Y., & Pacheco, E. B. A. V. (2021). A review on the applicability of life cycle assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment. Journal of Polymer Environmental Science, 29(5), 1333-1349. http://doi.org/10.1007/s10924-020-01966-7.

33 Cremonezzi, J. M. O., Pinto, G. M., Mincheva, R., Andrade, R. J. E., Raquez, J.-M., & Fechine, G. J. M. (2023). The micromechanics of graphene oxide and molybdenum disulfide in thermoplastic nanocomposites and the impact to the polymer-filler interphase. Composites Science and Technology, 243, 110236. http://doi.org/10.1016/j.compscitech.2023.110236.

34 Ferreira, E. H. C., Lima, L. P., & Fechine, G. J. M. (2020). The “superlubricity state” of carbonaceous fillers on polymer composites. Macromolecular Chemistry and Physics, 221(16), 2000192. http://doi.org/10.1002/macp.202000192.

35 Ferreira, E. H. C., Andrade, R. J. E., & Fechine, G. J. M. (2019). The “superlubricity state” of carbonaceous fillers on polyethylene-based composites in a molten state. Macromolecules, 52(24), 9620-9631. http://doi.org/10.1021/acs.macromol.9b01746.

36 Joynal Abedin, F. N., Hamid, H. A., Alkarkhi, A. F. M., Amr, S. S. A., Khalil, N. A., Ahmad Yahaya, A. N., Hossain, M. S., Hassan, A., & Zulkifli, M. (2021). The effect of graphene oxide and SEBS-g-MAH compatibilizer on mechanical and thermal properties of acrylonitrile-butadiene-styrene/talc composite. Polymers, 13(18), 3180. http://doi.org/10.3390/polym13183180. PMid:34578081.

37 Campo, E. A. (2008). Polymeric materials and properties. In E. A. Campo (Ed.), Selection of polymeric materials: How to select design properties from different standards (pp. 1-39). USA: William Andrew. http://doi.org/10.1016/B978-081551551-7.50003-6.

38 Hwang, D., Lee, S. G., & Cho, D. (2021). Dual-sizing effects of carbon fiber on the thermal, mechanical, and impact properties of carbon fiber/ABS composites. Polymers, 13(14), 2298. http://doi.org/10.3390/polym13142298. PMid:34301055.

39 Mazzucco, M. L. C., Marchesin, M. S., Fernandes, E. G., Costa, R. A., Marini, J., Bretas, R. E. S., & Bartoli, J. R. (2016). Nanocomposites of acrylonitrile-butadiene-styrene/montmorillonite/styrene block copolymers: structural, rheological, mechanical and flammability studies on the effect of organoclays and compatibilizers using statistically designed experiments. Journal of Composite Materials, 50(6), 771-782. http://doi.org/10.1177/0021998315581509.

40 Braga, N. F., Passador, F. R., Saito, E., & Cristovan, F. H. (2019). Effect of graphite content on the mechanical properties of acrylonitrile-butadiene-styrene (ABS). Macromolecular Symposia, 383(1), 1800018. http://doi.org/10.1002/masy.201800018.

41 Liang, J.-Z. (2019). Impact fracture behavior and morphology of polypropylene/graphene nanoplatelets composites. Polymer Composites, 40(S1), E511-E516. http://doi.org/10.1002/pc.24826.

42 Morales-Zamudio, L., Lozano, T., Caballero-Briones, F., Zamudio, M. A. M., Angeles-San Martin, M. E., de Lira-Gomez, P., Martinez-Colunga, G., Rodriguez-Gonzalez, F., Neira, G., & Sanchez-Valdes, S. (2021). Structure and mechanical properties of graphene oxide-reinforced polycarbonate. Materials Chemistry and Physics, 261, 124180. http://doi.org/10.1016/j.matchemphys.2020.124180.

43 Sabet, M. (2023). The impact of graphene oxide on the mechanical and thermal strength properties of polycarbonate. Journal of Elastomers and Plastics, 55(4), 511-525. http://doi.org/10.1177/00952443231160236.

44 Jyoti, J., Singh, B. P., Arya, A. K., & Dhakate, S. R. (2016). Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Advances, 6(5), 3997-4006. http://doi.org/10.1039/C5RA25561A.

45 Münstedt, H. (1981). Rheology of rubber‐modified polymer melts. Polymer Engineering and Science, 21(5), 259-270. http://doi.org/10.1002/pen.760210503.

46 Sanchez, L. C., Beatrice, C. A. G., Lotti, C., Marini, J., Bettini, S. H. P., & Costa, L. C. (2019). Rheological approach for an additive manufacturing printer based on material extrusion. International Journal of Advanced Manufacturing Technology, 105(5), 2403-2414. http://doi.org/10.1007/s00170-019-04376-9.

47 Münstedt, H. (2021). Rheological measurements and structural analysis of polymeric materials. Polymers, 13(7), 1123. http://doi.org/10.3390/polym13071123. PMid:33915989.

48 Huang, C., Qian, X., & Yang, R. (2018). Thermal conductivity of polymers and polymer nanocomposites. Materials Science and Engineering R Reports, 132, 1-22. http://doi.org/10.1016/j.mser.2018.06.002.

49 Zhao, H.-Y., Yu, M.-Y., Liu, J., Li, X., Min, P., & Yu, Z.-Z. (2022). Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nanomicro Letters, 14, 129. http://doi.org/10.1007/s40820-022-00878-6.

50 Chen, J., & Li, L. (2020). Effect of oxidation degree on the thermal properties of graphene oxide. Journal of Materials Research and Technology, 9(6), 13740-13748. http://doi.org/10.1016/j.jmrt.2020.09.092.

51 Li, A., Zhang, C., & Zhang, Y.-F. (2017). Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers, 9(9), 437. http://doi.org/10.3390/polym9090437. PMid:30965752.

52 Wang, J., Li, C., Li, J., Weng, G. J., & Su, Y. (2021). A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon, 175, 259-270. http://doi.org/10.1016/j.carbon.2020.12.086.

53 Santos, W. N., Sousa, J. A., & Gregorio, R., Jr. (2013). Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polymer Testing, 32(5), 987-994. http://doi.org/10.1016/j.polymertesting.2013.05.007.
 

68a7127aa9539543b8206193 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections