Recovery of the post-industrial recycled ABS thermomechanical properties by adding graphene oxide
Lucas Pacanaro de Lima; André Petraconi; Natália Ferreira Braga; Lidiane Cristina Costa; Ricardo Jorge Espanhol Andrade; Guilhermino José Macêdo Fechine
Abstract
Keywords
References
1 Oliveira, I. M., Gimenez, J. C. F., Xavier, G. T. M., Ferreira, M. A. B., Silva, C. M. P., Camargo, E. R., & Cruz, S. A. (2024). Recycling ABS from WEEE with peroxo-modified surface of titanium dioxide particles: alteration on antistatic and degradation properties.
2 Vazquez, Y. V., & Barbosa, S. E. (2017). Process window for direct recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from electrical and electronic equipment waste.
3 Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: effect of post-consumer content and of reprocessing cycles.
4 Saxena, D., & Maiti, P. (2021). Utilization of ABS from plastic waste through single-step reactive extrusion of LDPE/ABS blends of improved properties.
5 Brennan, L. B., Isaac, D. H., & Arnold, J. C. (2002). Recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment.
6 Wang, J., Li, Y., Song, J., He, M., Song, J., & Xia, K. (2015). Recycling of acrylonitrile-butadiene-styrene (ABS) copolymers from waste electrical and electronic equipment (WEEE), through using an epoxy-based chain extender.
7 Mao, N. D., Thanh, T. D., Thuong, N. T., Grillet, A.-C., Kim, N. H., & Lee, J. H. (2016). Enhanced mechanical and thermal properties of recycled ABS/nitrile rubber/nanofil N15 nanocomposites.
8 Lee, S. J., Yoon, S. J., & Jeon, I.-Y. (2022). Graphene/polymer nanocomposites: Preparation, mechanical properties, and application.
9 Trivedi, D. N., & Rachchh, N. V. (2022). Graphene and its application in thermoplastic polymers as nano-filler: A review.
10 Aumnate, C., Pongwisuthiruchte, A., Pattananuwat, P., & Potiyaraj, P. (2018). Fabrication of ABS/graphene oxide composite filament for fused filament fabrication (FFF) 3D printing.
11 Dul, S., Fambri, L., & Pegoretti, A. (2016). Fused deposition modelling with ABS-graphene nanocomposites.
12 Waheed, Q., Khan, A. N., & Jan, R. (2016). Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene.
13 Lee, S. J., Baek, J., & Jeon, I.-Y. (2024). Preparation and characteristics of decene-functionalized graphitic nanoplatelets/acrylonitrile butadiene styrene hybrid nanocomposites.
14 Du, J., & Cheng, H.-M. (2012). The fabrication, properties, and uses of graphene/polymer composites.
15 Fu, X., Lin, J., Liang, Z., Yao, R., Wu, W., Fang, Z., Zou, W., Wu, Z., Ning, H., & Peng, J. (2023). Graphene oxide as a promising nanofiller for polymer composite.
16 Shah, R., Kausar, A., Muhammad, B., & Shah, S. (2015). Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: a review.
17 Pinto, G. M., Silva, G. C., & Fechine, G. J. M. (2020). Effect of exfoliation medium on the morphology of multi-layer graphene oxide and its importance for poly(ethylene terephthalate)-based nanocomposites.
18 Farivar, F., Lay Yap, P., Karunagaran, R. U., & Losic, D. (2021). Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters.
19 Zhang, Z., Schniepp, H. C., & Adamson, D. H. (2019). Characterization of graphene oxide: variations in reported approaches.
20 Vorrada, L., Krit, T., Passakorn, E., Wanchai, B., & Achanai, B. (2013). Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods.
21 Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods.
22 Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets.
23 Muzyka, R., Drewniak, S., Pustelny, T., Chrubasik, M., & Gryglewicz, G. (2018). Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy.
24 Kaniyoor, A., & Ramaprabhu, S. (2012). A Raman spectroscopic investigation of graphite oxide derived graphene.
25 Prolongo, S. G., Jiménez-Suárez, A., Moriche, R., & Ureña, A. (2014). Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites.
26 Kaczmarek, Ł., Warga, T., Makowicz, M., Kyzioł, K., Bucholc, B., & Majchrzycki, Ł. (2020). The influence of the size and oxidation degree of graphene flakes on the process of creating 3D structures during its cross-linking.
27 Ramaraj, B. (2006). Mechanical and thermal properties of ABS and leather waste composites.
28 Song, P., Cao, Z., Meng, Q., Fu, S., Fang, Z., Wu, Q., & Ye, J. (2012). Effect of lignin incorporation and reactive compatibilization on the morphological, rheological, and mechanical properties of ABS resin.
29 Abdelhaleem, A. M. M., Abdellah, M. Y., Fathi, H. I., & Dewidar, M. (2016). Mechanical properties of ABS embedded with basalt fiber fillers.
30 Khan, M. M. K., Liang, R. F., Gupta, R., & Agarwal, S. (2005). Rheological and mechanical properties of ABS/PC blends.
31 Budin, S., Hyie, K. M., Yussof, H., Ishak, A., & Ginting, R. (2020). Investigation on mechanical properties of blend virgin and recycled acrylonitrile-butadiene-styrene (ABS) in injection molding.
32 Teixeira, F. S. M., Peres, A. C. C., Gomes, T. S., Visconte, L. L. Y., & Pacheco, E. B. A. V. (2021). A review on the applicability of life cycle assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment.
33 Cremonezzi, J. M. O., Pinto, G. M., Mincheva, R., Andrade, R. J. E., Raquez, J.-M., & Fechine, G. J. M. (2023). The micromechanics of graphene oxide and molybdenum disulfide in thermoplastic nanocomposites and the impact to the polymer-filler interphase.
34 Ferreira, E. H. C., Lima, L. P., & Fechine, G. J. M. (2020). The “superlubricity state” of carbonaceous fillers on polymer composites.
35 Ferreira, E. H. C., Andrade, R. J. E., & Fechine, G. J. M. (2019). The “superlubricity state” of carbonaceous fillers on polyethylene-based composites in a molten state.
36 Joynal Abedin, F. N., Hamid, H. A., Alkarkhi, A. F. M., Amr, S. S. A., Khalil, N. A., Ahmad Yahaya, A. N., Hossain, M. S., Hassan, A., & Zulkifli, M. (2021). The effect of graphene oxide and SEBS-g-MAH compatibilizer on mechanical and thermal properties of acrylonitrile-butadiene-styrene/talc composite.
37 Campo, E. A. (2008). Polymeric materials and properties. In E. A. Campo (Ed.),
38 Hwang, D., Lee, S. G., & Cho, D. (2021). Dual-sizing effects of carbon fiber on the thermal, mechanical, and impact properties of carbon fiber/ABS composites.
39 Mazzucco, M. L. C., Marchesin, M. S., Fernandes, E. G., Costa, R. A., Marini, J., Bretas, R. E. S., & Bartoli, J. R. (2016). Nanocomposites of acrylonitrile-butadiene-styrene/montmorillonite/styrene block copolymers: structural, rheological, mechanical and flammability studies on the effect of organoclays and compatibilizers using statistically designed experiments.
40 Braga, N. F., Passador, F. R., Saito, E., & Cristovan, F. H. (2019). Effect of graphite content on the mechanical properties of acrylonitrile-butadiene-styrene (ABS).
41 Liang, J.-Z. (2019). Impact fracture behavior and morphology of polypropylene/graphene nanoplatelets composites.
42 Morales-Zamudio, L., Lozano, T., Caballero-Briones, F., Zamudio, M. A. M., Angeles-San Martin, M. E., de Lira-Gomez, P., Martinez-Colunga, G., Rodriguez-Gonzalez, F., Neira, G., & Sanchez-Valdes, S. (2021). Structure and mechanical properties of graphene oxide-reinforced polycarbonate.
43 Sabet, M. (2023). The impact of graphene oxide on the mechanical and thermal strength properties of polycarbonate.
44 Jyoti, J., Singh, B. P., Arya, A. K., & Dhakate, S. R. (2016). Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor.
45 Münstedt, H. (1981). Rheology of rubber‐modified polymer melts.
46 Sanchez, L. C., Beatrice, C. A. G., Lotti, C., Marini, J., Bettini, S. H. P., & Costa, L. C. (2019). Rheological approach for an additive manufacturing printer based on material extrusion.
47 Münstedt, H. (2021). Rheological measurements and structural analysis of polymeric materials.
48 Huang, C., Qian, X., & Yang, R. (2018). Thermal conductivity of polymers and polymer nanocomposites.
49 Zhao, H.-Y., Yu, M.-Y., Liu, J., Li, X., Min, P., & Yu, Z.-Z. (2022). Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites.
50 Chen, J., & Li, L. (2020). Effect of oxidation degree on the thermal properties of graphene oxide.
51 Li, A., Zhang, C., & Zhang, Y.-F. (2017). Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications.
52 Wang, J., Li, C., Li, J., Weng, G. J., & Su, Y. (2021). A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites.
53 Santos, W. N., Sousa, J. A., & Gregorio, R., Jr. (2013). Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures.