Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20230053
Polímeros: Ciência e Tecnologia
Original Article

Pectin-based films with thyme essential oil: production, characterization, antimicrobial activity, and biodegradability

Greice Ribeiro Furlan; Wendel Paulo Silvestre; Camila Baldasso

Downloads: 1
Views: 259

Abstract

This work aimed to incorporate thyme essential oil into films composed of pectin to provide antimicrobial action to them. The effect of adding essential oil on the films' mechanical, physical-chemical, and barrier properties and their degradability was evaluated. Essential oil addition was possible by using Tween® 20 as an emulsifier, and it was possible to observe antimicrobial activity in the films containing 1.0 wt.% and 2.0 wt.% essential oil. The films containing thyme essential oil were more elastic and thicker but less resistant, with high permeability to water vapor and more hydrophilic relative to other formulations. Scanning electron microscopy analysis showed the presence of heterogeneities in the formulations with essential oil. The films produced using the optimized formulation (30 wt.% glycerol, 1.0 wt.% thyme essential oil, and 0.5 wt.% Tween® 20 relative to pectin mass) degraded entirely after 24 days of exposure to standard soil.

 

 

Keywords

active packaging, biological activity, biopolymer, terpenes

References

1 Platt, D. (2006). Biodegradable polymers: market report. Shawbury: iSmithers Rapra Publishing.

2 Pirsa, S., & Hafezi, K. (2023). Hydrocolloids: structure, preparation method, and application in food industry. Food Chemistry, 399, 133967. http://dx.doi.org/10.1016/j.foodchem.2022.133967. PMid:35998495.

3 Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511. http://dx.doi.org/10.1080/10408390701537344. PMid:18568856.

4 Falleh, H., Ben Jemaa, M., Saada, M., & Ksouri, R. (2020). Essential oils: a promising eco-friendly food preservative. Food Chemistry, 330, 127268. http://dx.doi.org/10.1016/j.foodchem.2020.127268. PMid:32540519.

5 Batista, J. A. (2004). Development, characterization and applications of biofilms based on pectin, gelatin and fatty acids in bananas and broccoli seeds (Master’s dissertation). Universidade Estadual de Campinas, Campinas.

6 Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. J., Soares, N. F. F., & McHugh, T. H. (2014). Edible films from pectin: physical-mechanical and antimicrobial properties - a review. Food Hydrocolloids, 35, 287-296. http://dx.doi.org/10.1016/j.foodhyd.2013.06.005.

7 Miranda, M., Sun, X., Ference, C., Plotto, A., Bai, J., Wood, D., Assis, O. B. G., Ferreira, M. D., & Baldwin, E. (2021). Nano- and micro- carnauba wax emulsions versus shellac protective coatings on postharvest citrus quality. Journal of the American Society for Horticultural Science, 146(1), 40-49. http://dx.doi.org/10.21273/JASHS04972-20.

8 Parris, N., Coffin, D. R., Joubran, R. F., & Pessen, H. (1995). Composition factors affecting the water vapor permeability and tensile properties of hydrophilic films. Journal of Agricultural and Food Chemistry, 43(6), 1432-1435. http://dx.doi.org/10.1021/jf00054a004.

9 Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. Journal of Food Engineering, 81(3), 634-641. http://dx.doi.org/10.1016/j.jfoodeng.2007.01.007.

10 Butler, B. L., Vergano, P. J., Testin, R. F., Bunn, J. M., & Wiles, J. L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5), 953-956. http://dx.doi.org/10.1111/j.1365-2621.1996.tb10909.x.

11 Cervera, M. F., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., Colarte, A. I., & Yliruusi, J. (2004). Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58(1), 69-76. http://dx.doi.org/10.1016/j.ejpb.2004.03.015. PMid:15207539.

12 Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science & Emerging Technologies, 11(3), 503-510. http://dx.doi.org/10.1016/j.ifset.2010.01.006.

13 Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639-644. http://dx.doi.org/10.1016/j.foodres.2006.01.013.

14 Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 82(3), 338-345. http://dx.doi.org/10.1016/j.meatsci.2009.02.004. PMid:20416718.

15 Leonardelli, C., Silvestre, W. P., & Baldasso, C. (2020). Effect of chitosan addition in whey-based biodegradable films. Brazilian Archives of Biology and Technology, 63, e20200178. http://dx.doi.org/10.1590/1678-4324-2020200178.

16 Macleod, G. S., Fell, J. T., & Collett, J. H. (1997). Studies on the physical properties of mixed pectin/ethylcellulose films intended for colonic drug delivery. International Journal of Pharmaceutics, 157(1), 53-60. http://dx.doi.org/10.1016/S0378-5173(97)00216-0.

17 Meydanju, N., Pirsa, S., & Farzi, J. (2022). Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: investigation of physicochemical and antibacterial properties. Polymer Testing, 106, 107445. http://dx.doi.org/10.1016/j.polymertesting.2021.107445.

18 Imeson, A. (2010). Food stabilisers, thickeners, and gelling agents. Singapore: Blackwell Publishing Ltd.

19 May, C. D. (1990). Industrial pectins: sources, production and applications. Carbohydrate Polymers, 12(1), 79-99. http://dx.doi.org/10.1016/0144-8617(90)90105-2.

20 Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., & Von Wright, A. (1998). Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590-3595. http://dx.doi.org/10.1021/jf980154m.

21 Zheng, Z. L., Tan, J. Y. W., Liu, H. Y., Zhou, X. H., Xiang, X., & Wang, K. Y. (2009). Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture, 292(3-4), 214-218. http://dx.doi.org/10.1016/j.aquaculture.2009.04.025.

22 Hosseini, M. H., Razavi, S. H., & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33(6), 727-743. http://dx.doi.org/10.1111/j.1745-4549.2008.00307.x.

23 Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889-896. http://dx.doi.org/10.1016/j.fm.2010.05.012. PMid:20688230.

24 Zivanovic, S., Chi, S., & Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70(1), M45-M51. http://dx.doi.org/10.1111/j.1365-2621.2005.tb09045.x.

25 Santos, V. S., Aouada, F. A., & Moura, M. R. (2018). Incorporation of polymeric nanoparticles and garlic essential oil in pectin-based films for edible packaging. In 23º Congresso Brasileiro de Engenharia e Ciência dos Materiais (pp. 8442-8452). São Paulo: Metallum Congressos Técnicos e Científicos.

26 Pirouzifard, M., Yorghanlu, R. A., & Pirsa, S. (2020). Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. Journal of Thermoplastic Composite Materials, 33(7), 915-937. http://dx.doi.org/10.1177/0892705718815541.

27 Igarashi, M. C. (2010). Development of a film based on alginate incorporated from the antimicrobial agent essential oil of clove: application in food (Master’s dissertation). Universidade de São Paulo, São Paulo.

28 Souza, A. C. (2011). Development of active biodegradable cassava starch packaging and natural antimicrobial agents (Doctoral thesis). Universidade de São Paulo, São Paulo.

29 Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166. http://dx.doi.org/10.1016/j.foodchem.2010.02.033.

30 Pavlath, A. E., Voisin, A., & Robertson, G. H. (1999). Pectin-based biodegradable water insoluble films. Macromolecular Symposia, 140(1), 107-113. http://dx.doi.org/10.1002/masy.19991400112.

31 Slavutsky, A. M., Gamboni, J. E., & Bertuzzi, M. A. (2018). Formulation and characterization of bilayer films based on Brea gum and Pectin. Brazilian Journal of Food Technology, 21, e2017213. http://dx.doi.org/10.1590/1981-6723.21317.

32 McHugh, T. H., & Krochta, J. M. (1994). Sorbitol- vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841-845. http://dx.doi.org/10.1021/jf00040a001.

33 Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., & Friedman, M. (2009). Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. Journal of Food Science, 74(7), M372-M378. http://dx.doi.org/10.1111/j.1750-3841.2009.01282.x. PMid:19895483.

34 Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. http://dx.doi.org/10.1016/j.jfoodeng.2010.01.026.

35 Bona, E. A. M., Pinto, F. G. S., Fruet, T. K., Jorge, T. C. M., & Moura, A. C. (2014). Comparison of methods for evaluating antimicrobial activity and determining the minimum inhibitory concentration (MIC) of aqueous and ethanolic plant extracts. Arquivos do Instituto Biológico, 81(3), 218-225. http://dx.doi.org/10.1590/1808-1657001192012.

36 Bierhalz, A. C. K. (2010). Production and characterization of active biofilms based on pectin and pectin/alginate crosslinked with calcium (Master’s dissertation). Universidade Estadual de Campinas, Campinas.

37 Tong, W. Y., Rafiee, A. R. A., Leong, C. R., Tan, W.-N., Dailin, D. J., Almarhoon, Z. M., Shelkh, M., Nawaz, A., & Chuah, L. F. (2023). Development of sodium alginate-pectin biodegradable active food packaging film containing cinnamic acid. Chemosphere, 336, 139212. http://dx.doi.org/10.1016/j.chemosphere.2023.139212. PMid:37315854.

38 Silva, W. A., Pereira, J., Carvalho, C. W. P., & Ferrua, F. Q. (2007). Determination of color, topographic superficial image and contact angle of the biofilms of different starch sources. Ciência e Agrotecnologia, 31(1), 154-163. http://dx.doi.org/10.1590/S1413-70542007000100023.

39 Melo, P. T. S., Aouada, F. A., & Moura, M. R. (2017). Fabricação de filmes bionanocompósitos à base de pectina e polpa de cacau com potencial uso como embalagem para alimentos. Química Nova, 40(3), 247-251. http://dx.doi.org/10.21577/0100-4042.20160188.

40 Camargo, L. A., Moreira, F. K. V., Marconcini, J. M., & Mattoso, L. H. C. (2013). Avaliação do efeito de plastificante induzido pelo glicerol em filmes de pectina reforçados com nanopartículas de Mg(OH)2. In VII Workshop de Nanotecnologia Aplicada ao Agronegócio (pp. 340-342). São Carlos: Embrapa Instrumentação.

41 Antonioli, G., Fontanella, G., Echeverrigaray, S., Delamare, A. P. L., Pauletti, G. F., & Barcellos, T. (2020). Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: in vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, 126997. http://dx.doi.org/10.1016/j.foodchem.2020.126997. PMid:32422511.

42 Gorjian, H., Mihankhah, P., & Khaligh, N. G. (2022). Influence of tween nature and type on physicochemical properties and stability of spearmint essential oil (Mentha spicata L.) stabilized with basil seed mucilage nanoemulsion. Journal of Molecular Liquids, 359, 119379. http://dx.doi.org/10.1016/j.molliq.2022.119379.

43 Sousa, C. P. (2006). Food safety and food-borne diseases: using the coliform group as an indicator of food quality. Revista de APS, 9(1), 83-88.

44 Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338. http://dx.doi.org/10.1016/j.foodhyd.2019.105338.

45 Lorevice, M. V. (2019). Nanoemulsions of essential oils: stability mechanisms and interactions with pectin in bionanocomposites for use as active packaging (Doctoral thesis). Universidade Federal de São Carlos, São Carlos.

46 Caetano, K. S. (2006). Use of starch, orégano oil and pumpkin waste extract in the development of active biodegradable films (Master’s dissertation). Universidade Federal do Rio Grande do Sul, Porto Alegre.

47 Aitboulahsen, M., El Galiou, O., Laglaoui, A., Bakkali, M., & Zerrouk, M. H. (2020). Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin-based films. Journal of Food Processing and Preservation, 44(6), e14480. http://dx.doi.org/10.1111/jfpp.14480.

48 Syafiq, R., Sapuan, S. M., Zuhri, M. Y. M., Ilyas, R. A., Nazrin, A., Sherwani, S. F. K., & Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: a review. Polymers, 12(10), 2403. http://dx.doi.org/10.3390/polym12102403. PMid:33086533.

49 Braskem. (2002). Propriedades de referência dos compostos de PVC. São Paulo: Braskem. Retrieved in 2023, September 1, from https://www.braskem.com.br/Portal/Principal/Arquivos/html/boletm_tecnico/Tabela_de_Propriedades_de_Referencia_dos_Compostos_de_PVC.pdf

50 Ngo, T. M. P., Nguyen, T. H., Dang, T. M. Q., Tran, T. X., & Rachtanapun, P. (2020). Characteristics and antimicrobial properties of active edible films based on pectin and nanochitosan. International Journal of Molecular Sciences, 21(6), 2224. http://dx.doi.org/10.3390/ijms21062224. PMid:32210135.

51 Isotton, F. S. (2013). Development and characterization of corn starch films etherified with the plasticizers glycerol, sorbitol, and poly(vinyl alcohol) (Master’s dissertation). Universidade de Caxias do Sul, Caxias do Sul.

52 Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.068. PMid:28818729.

53 Ezati, P., & Rhim, J.-W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230, 115638. http://dx.doi.org/10.1016/j.carbpol.2019.115638. PMid:31887862.

54 Sriamornsak, P., Wattanakorn, N., Nunthanid, J., & Puttipipatkhachorn, S. (2008). Mucoadhesion of pectin as evidence by wettability and chain interpenetration. Carbohydrate Polymers, 74(3), 458-467. http://dx.doi.org/10.1016/j.carbpol.2008.03.022.

55 Law, K.-Y. (2014). Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. The Journal of Physical Chemistry Letters, 5(4), 686-688. http://dx.doi.org/10.1021/jz402762h. PMid:26270837.

56 Pagno, C. H. (2016). Effect of the addition of nanostructures, essential oils, and chitosan on the development of films and biodegradable coatings with antimicrobial properties (Doctoral thesis). Universidade Federal do Rio Grande do Sul, Porto Alegre.

57 Siracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J. P., Tylewicz, U., & Lotti, N. (2018). Characterization of active edible films based on citral essential oil, alginate and pectin. Materials, 11(10), 1980. http://dx.doi.org/10.3390/ma11101980. PMid:30326558.

58 Kamnev, A. A., Colina, M., Rodriguez, J., Ptitchkina, N. M., & Ignatov, V. V. (1998). Comparative spectroscopic characterization of different pectins and their sources. Food Hydrocolloids, 12(3), 263-271. http://dx.doi.org/10.1016/S0268-005X(98)00014-9.

59 Norcino, L. B., Mendes, J. F., Natarelli, C. V. L., Manrich, A., Oliveira, J. E., & Mattoso, L. H. C. (2020). Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocolloids, 106, 105862. http://dx.doi.org/10.1016/j.foodhyd.2020.105862.

60 Mendes, J. F., Norcino, L. B., Martins, H. H. A., Manrich, A., Otoni, C. G., Carvalho, E. E. N., Piccoli, R. H., Oliveira, J. E., Pinheiro, A. C. M., & Mattoso, L. H. C. (2020). Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocolloids, 100, 105428. http://dx.doi.org/10.1016/j.foodhyd.2019.105428.

61 Grisa, A. M. C., Sirena, M. C., Zini, A., Brancher, L. R., Zeni, M., & Nunes, M. F. O. (2019). Characterization of non-structural poly (vinyl) chloride, rock wool and medium density fiberboard waste composites. Material Science & Engineering International Journal, 3(6), 201-203. http://dx.doi.org/10.15406/mseij.2019.03.00114.
 

657b09d6a953955d6c2e61e5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections