Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20230022
Polímeros: Ciência e Tecnologia
Original Article

Cellulose fiber network as reinforcement of thermoplastic paraffin films

Matheus Fernandes Flores; Luciano Cordeiro; Antonio Aprigio da Silva Curvelo

Downloads: 0
Views: 567

Abstract

The incorporation of natural fibers into polymer matrices poses challenges due to physicochemical incompatibility, which is typically addressed through precursor modification or the use of compatibilizers. Here, we introduce a novel type of composite that overcomes this challenge by utilizing a network of fine, porous cellulosic sheets inter-diffused with a commercial paraffin films. This approach physically adheres the fiber network to the matrix, preserving its structure. Microscopy images confirm the formation of the proposed microstructure, and mechanical testing reveals a gradual increase in modulus and strength with the incorporation of cellulose. The maximum incorporation achieved was 7.6% (w/w) of cellulosic fibers, resulting in a 167% increase (1.67 times improved) in composite stiffness. Moreover, these composites exhibit ductility, with an average deformation of 410 ± 38%, corresponding to 20% reduction in relation to pure matrix. Our findings demonstrate the potential of this approach for developing sustainable materials with improved mechanical properties.

 

 

Keywords

natural fibers, composites, network reinforcement, paper, polymer matrices

References

1 Kumar, K. P., & Sekaran, A. S. J. (2014). Some natural fibers used in polymer composites and their extraction processes: a review. Journal of Reinforced Plastics and Composites, 33(20), 1879-1892. http://dx.doi.org/10.1177/0731684414548612.

2 Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites - a review. Polymer Engineering and Science, 49(7), 1253-1272. http://dx.doi.org/10.1002/pen.21328.

3 Kalia, S., Kaith, B. S., & Kaur, I. (Eds.) (2011).Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology. Germany: Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-17370-7.

4 Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites. Part A, Applied Science and Manufacturing, 35(3), 371-376. http://dx.doi.org/10.1016/j.compositesa.2003.09.016.

5 Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites. Part B, Engineering, 47, 35-41. http://dx.doi.org/10.1016/j.compositesb.2012.10.046.

6 Portella, E. H., Romanzini, D., Angrizani, C. C., Amico, S. C., & Zattera, A. J. (2016). Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research, 19(3), 542-547. http://dx.doi.org/10.1590/1980-5373-MR-2016-0058.

7 Pracella, M., Haque, M.-U., & Alvarez, V. (2010). Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers, 2(4), 554-574. http://dx.doi.org/10.3390/polym2040554.

8 Cipriano, J. P., Zanini, N. C., Dantas, I. R., & Mulinari, D. R. (2019). Mechanical properties of polypropylene composites reinforced with Macadamia Nutshell Fibers. Journal of Renewable Materials, 7(10), 1047-1053. http://dx.doi.org/10.32604/jrm.2019.00001.

9 Lima, L. P. F. C., Santana, R. M. C., & Rodríguez, C. D. C. (2020). Influence of Coupling Agent in Mechanical, Physical and Thermal Properties of Polypropylene/Bamboo Fiber Composites: Under Natural Outdoor Aging. Polymers, 12(4), 929. http://dx.doi.org/10.3390/polym12040929. PMid:32316512.

10 Kinloch, A. J. (2012).Adhesion and adhesives: science and technology. UK: Springer Science & Business Media.

11 Oksman, K., Aitomäki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., & Hooshmand, S. (2016). Review of the recent developments in cellulose nanocomposite processing. Composites. Part A, Applied Science and Manufacturing, 83, 2-18. http://dx.doi.org/10.1016/j.compositesa.2015.10.041.

12 Oksman, K., Mathew, A. P., & Sain, M. (2009). Novel bionanocomposites: processing, properties and potential applications. Plastics, Rubber and Composites, 38(9-10), 396-405. http://dx.doi.org/10.1179/146580109X12540995045723.

13 Kong, I., Tshai, K. Y., & Hoque, M. E. (2015). Manufacturing of natural fibre-reinforced polymer composites by solvent casting method. In M. S. Salit, M. Jawaid, N. K., Yusoff, & M. E., Hoque (Eds.),Manufacturing of natural fibre reinforced polymer composites (pp. 331-349). Switzerland: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-07944-8_16.

14 Ljungberg, N., Cavaillé, J.-Y., & Heux, L. (2006). Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer, 47(18), 6285-6292. http://dx.doi.org/10.1016/j.polymer.2006.07.013.

15 Shamsuri, A. A. (2015). Compression moulding technique for manufacturing biocomposite products. International Journal of Applied Science and Technology, 5(3), 23-26. Retrieved in 2023, April 17, from https://www.ijastnet.com/journals/Vol_5_No_3_June_2015/3.pdf

16 Zampaloni, M., Pourboghrat, F., Yankovich, S. A., Rodgers, B. N., Moore, J., Drzal, L. T., Mohanty, A. K., & Misra, M. (2007). Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites. Part A, Applied Science and Manufacturing, 38(6), 1569-1580. http://dx.doi.org/10.1016/j.compositesa.2007.01.001.

17 Wu, Y., Xia, C., Cai, L., Shi, S. Q., & Cheng, J. (2018). Water-resistant hemp fiber-reinforced composites: in-situ surface protection by polyethylene film. Industrial Crops and Products, 112, 210-216. http://dx.doi.org/10.1016/j.indcrop.2017.12.014.

18 Fengel, D., & Wegener, G. (Eds.) (2011). Wood: chemistry, ultrastructure, reactions. Germany: Walter de Gruyter.

19 Sahin, H. T., & Arslan, M. B. (2008). A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. International Journal of Molecular Sciences, 9(1), 78-88. http://dx.doi.org/10.3390/ijms9010078. PMid:19325721.

20 Cordeiro, L., Prado, A. P. G. A., & Curvelo, A. A. S. (2022). Ductile composite films of polyethylene and low grammage paper. Industrial Crops and Products, 184, 115039. http://dx.doi.org/10.1016/j.indcrop.2022.115039.

21 Singleton, A. C. N., Baillie, C. A., Beaumont, P. W. R., & Peijs, T. (2003). On the mechanical properties, deformation and fracture of a natural fibre/recycled polyemer composites. Composites. Part B, Engineering, 34(6), 519-526. http://dx.doi.org/10.1016/S1359-8368(03)00042-8.

22 Fotouh, A., Wolodko, J. D., & Lipsett, M. G. (2014). Fatigue of natural fiber thermoplastic composites. Composites. Part B, Engineering, 62, 175-182. http://dx.doi.org/10.1016/j.compositesb.2014.02.023.

23 Beaumont, P. W. R. (2003). Fatigue. In B. Harris (Ed.), Composites: science and technology of the fatigue response of fiber-reinforced plastics (pp. 365-412). UK: Woodhead Publishing.
 

64f723aca95395538374e022 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections