Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20230010
Polímeros: Ciência e Tecnologia
Original Article

Superabsorbent biodegradable CMC membranes loaded with propolis: Peppas-Sahlin kinetics release

Juliana Paes Leme de Mello Sousa; Renata Nunes Oliveira; Antonia Monica Neres Santos; Ormindo Domingues Gamallo; Leonardo Sales Araújo; Antonieta Middea; Yara Peluso Cid; Rosane Nora Castro

Downloads: 1
Views: 595

Abstract

Propolis is a resinous product collected by honeybees with a complex chemical composition. Sodium carboxymethylcellulose is a polymer commonly used in wound care. The goal of the present work was to produce and characterize NaCMC membranes loaded with extract of Brazilian brown propolis (CMC-P). Flavonoids and phenolic acids were identified in the propolis extracts, where the main identified substance was kaempferide. The brown propolis extracted was active against S. aureus. The low swelling capacity and high gel fraction of CMC-P would be the consequence of propolis (responsible for a hydrophobic barrier) filling the pores of the membrane. Propolis could be anchoring the NaCMC chains (as observed by FTIR) due to interaction between components, which is corroborated by the CMC-P sample degrading less than the CMC sample (>400ºC). There was non-linear diffusion release kinetics for most phenolic substances of the propolis extract. The CMC-P sample presents potential as a dressing material.

 

 

Keywords

wound care, NaCMC hydrogel, propolis release

References

1 Guo, S., & DiPietro, L. A. (2010). Factors Affecting Wound Healing. Journal of Dental Research, 89(3), 219-229. http://dx.doi.org/10.1177/0022034509359125. PMid:20139336.

2 Gonzalez, A. C. O., Costa, T. F., Andrade, Z. A., & Medrado, A. R. A. P. (2016). Wound healing - A literature review. Anais Brasileiros de Dermatologia, 91(5), 614-620. http://dx.doi.org/10.1590/abd1806-4841.20164741. PMid:27828635.

3 World Health Organization (2013). Prevention and management of wound infection. Switzerland: Department of Violence and Injury Prevention and Disability - World Health Organization. Retrieved in 2023, February 05, from https://www.who.int/publications-detail-redirect/prevention-and-management-of-wound-infection

4 World Health Organization (2022). Global Report on infection prevention and control. Switzerland:World Health Organization

5 Cook, L., & Ousey, K. (2011). Demystifying wound infection: identification and management. Practice Nursing, 22(8), 424-428. http://dx.doi.org/10.12968/pnur.2011.22.8.424.

6 Filius, P. M. G., & Gyssens, I. C. (2002). Impact of increasing antimicrobial resistance on wound management. American Journal of Clinical Dermatology, 3(1), 1-7. http://dx.doi.org/10.2165/00128071-200203010-00001. PMid:11817964.

7 Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: staphylococcus aureus in the antibiotic era. Nature Reviews. Microbiology, 7(9), 629-641. http://dx.doi.org/10.1038/nrmicro2200. PMid:19680247.

8 Centers for Disease Control and Prevention - CDC (2019). Multidrug-resistant pseudomonas aeruginosa. Atlanta: CDC. Retrieved in 2023, February 05, from https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf.

9 Puca, V., Marulli, R. Z., Grande, R., Vitale, I., Niro, A., Molinaro, G., Prezioso, S., Muraro, R., & Di Giovanni, P. (2021). Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics (Basel, Switzerland), 10(10), 1162. http://dx.doi.org/10.3390/antibiotics10101162. PMid:34680743.

10 Mieles, J. Y., Vyas, C., Aslan, E., Humphreys, G., Diver, C., & Bartolo, P. (2022). Honey: an advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics, 14(8), 1663. http://dx.doi.org/10.3390/pharmaceutics14081663. PMid:36015289.

11 Ghasemi, F. S., Eshraghi, S. S., Andalibi, F., Hooshyar, H., Kalantar- Neyestanaki, D., Samadi, A., & Fatahi-Bafghi, M. (2017). Anti-bacterial effect of propolis extract in oil against different bacteria. Zahedan Journal of Researches in Medical Sciences, 19(3), e7225. http://dx.doi.org/10.5812/zjrms.7225.

12 Quintino, R. L., Reis, A. C., Fernandes, C. C., Martins, C. H. G., Colli, A. C., Crotti, A. E. M., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., & Miranda, M. L. D. (2020). Brazilian green propolis: chemical composition of essential oil and their in vitro antioxidant, antibacterial and antiproliferative activities. Brazilian Archives of Biology and Technology, 63, e20190408. http://dx.doi.org/10.1590/1678-4324-2020190408.

13 Pinto, L. M. A., Prado, N. R. T., & Carvalho, L. B. (2011). Propriedades, usos e aplicações da própolis. Revista Eletrônica de Farmácia, 8(3), 76-100.

14 Martinotti, S., & Ranzato, E. (2015). Propolis: a new frontier for wound healing? Burns and Trauma, 3, 9. http://dx.doi.org/10.1186/s41038-015-0010-z. PMid:27574655.

15 Araujo, M. A. R., Libério, S. A., Guerra, R. N. M., Ribeiro, M. N. S., & Nascimento, F. R. F. (2012). Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review. Revista Brasileira de Farmacognosia, 22(1), 208-219. http://dx.doi.org/10.1590/S0102-695X2011005000167.

16 Woźniak, M., Mrówczyńska, L., Waśkiewicz, A., Rogoziński, T., & Ratajczak, I. (2019). The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Revista Brasileira de Farmacognosia, 29(3), 301-308. http://dx.doi.org/10.1016/j.bjp.2019.02.002.

17 Olegário, L. S., Andrade, J. K. S., Andrade, G. R. S., Denadai, M., Cavalcanti, R. L., Silva, M. A. A. P., & Narain, N. (2019). Chemical characterization of four Brazilian brown propolis: an insight in tracking of its geographical location of production and quality control. Food Research International, 123, 481-502. http://dx.doi.org/10.1016/j.foodres.2019.04.004. PMid:31284998.

18 Machado, C. S., Mokochinski, J. B., Lira, T. O., Oliveira, F. C. E., Cardoso, M. V., Ferreira, R. G., Sawaya, A. C. H. F., Ferreira, A. G., Pessoa, C., Cuesta-Rubio, O., Monteiro, M. C., Campos, M. S., & Torres, Y. R. (2016). Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evidence-Based Complementary and Alternative Medicine, 2016, 6057650. http://dx.doi.org/10.1155/2016/6057650. PMid:27525023.

19 Pontes, M. L. C., Vasconcelos, I. R. A., Diniz, M. F. F. M., & Pessôa, H. D. L. F. (2018). Chemical characterization and pharmacological action of Brazilian red propolis. Acta Brasiliensis, 2(1), 34-39. http://dx.doi.org/10.22571/2526-433868.

20 Batista, L. L. V., Campesatto, E. A., Assis, M. L. B., Barbosa, A. P. F., Grillo, L. A. M., & Dornelas, C. B. (2012). Comparative study of topical green and red propolis in the repair of wounds induced in rats. Revista do Colégio Brasileiro de Cirurgiões, 39(6), 515-520. http://dx.doi.org/10.1590/S0100-69912012000600012. PMid:23348649.

21 Moura, S. A. L., Negri, G., Salatino, A., Lima, L. D. C., Dourado, L. P. A., Mendes, J. B., Andrade, S. P., Ferreira, M. A. N. D., & Cara, D. C. (2011). Aqueous extract of Brazilian Green Propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evidence-Based Complementary and Alternative Medicine, 2011, 748283. http://dx.doi.org/10.1093/ecam/nep112. PMid:19690045.

22 Conceição, M., Gushiken, L. F. S., Aldana-Mejía, J. A., Tanimoto, M. H., Ferreira, M. V. S., Alves, A. C. M., Miyashita, M. N., Bastos, J. K., Beserra, F. P., & Pellizzon, C. H. (2022). Histological, immunohistochemical and antioxidant analysis of skin wound healing influenced by the topical application of Brazilian red propolis. Antioxidants, 11(11), 2188. http://dx.doi.org/10.3390/antiox11112188. PMid:36358560.

23 Zaccaria, V., Curti, V., Di Lorenzo, A., Baldi, A., Maccario, C., Sommatis, S., Mocchi, R., & Daglia, M. (2017). Effect of green and brown propolis extracts on the expression levels of microRNAs, mRNAs and proteins, related to oxidative stress and inflammation. Nutrients, 9(10), 1090. http://dx.doi.org/10.3390/nu9101090. PMid:28974022.

24 Dembogurski, D. S. O., Trentin, D. S., Boaretto, A. G., Rigo, G. V., Silva, R. C., Tasca, T., Macedo, A. J., Carollo, C. A., & Silva, D. B. (2018). Brown propolis-metabolomic innovative approach to determine compounds capable of killing Staphylococcus aureus biofilm and Trichomonas vaginalis. Food Research International, 111, 661-673. http://dx.doi.org/10.1016/j.foodres.2018.05.033. PMid:30007730.

25 Costa, M. C., Cruz, A. I. C., Ferreira, M. A., Bispo, A. S. R., Ribeiro, P. R., Costa, J. A., Araújo, F. M., & Evangelista-Barreto, N. S. (2023). Brown propolis bioactive compounds as a natural antimicrobial in alginate films applied to Piper nigrum L. Ciência Rural, 53(5), e20210805. http://dx.doi.org/10.1590/0103-8478cr20210805.

26 Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47(6), 587-597. http://dx.doi.org/10.1007/s13197-010-0162-6. PMid:23572691.

27 Xu, H., Chen, G., Jin, R., Chen, D., Wang, Y., & Pei, J. (2014). Green synthesis of Bi2Se3 hierarchical nanostructure and its electrochemical properties. RSC Advances, 4(17), 8922-8929. http://dx.doi.org/10.1039/c3ra46473c.

28 Waring, M. J., & Parsons, D. (2001). Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials, 22(9), 903-912. http://dx.doi.org/10.1016/S0142-9612(00)00254-4. PMid:11311009.

29 Moseley, R., Walker, M., Waddington, R. J., & Chen, W. Y. J. (2003). Comparison of the antioxidant properties of wound dressing materials-carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species. Biomaterials, 24(9), 1549-1557. http://dx.doi.org/10.1016/S0142-9612(02)00540-9. PMid:12559815.

30 Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings - a review. Biomedicine (Taipei), 5(4), 22. http://dx.doi.org/10.7603/s40681-015-0022-9. PMid:26615539.

31 Mali, K. K., Dhawale, S. C., Dias, R. J., Dhane, N. S., & Ghorpade, V. S. (2018). Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Indian Journal of Pharmaceutical Sciences, 80(4), 657-667. http://dx.doi.org/10.4172/pharmaceutical-sciences.1000405.

32 Silva, V. C., Silva, A. M. G. S., Basílio, J. A. D., Xavier, J. A., Nascimento, T. G., Naal, R. M. Z. G., del Lama, M. P., Leonelo, L. A. D., Mergulhão, N. L. O. N., Maranhão, F. C. A., Silva, D. M. W., Owen, R., Duarte, I. F. B., Bulhões, L. C. G., Basílio, I. D. Jr, & Goulart, M. O. F. (2020). New insights for red propolis of alagoas: chemical constituents, topical membrane formulations and their physicochemical and biological properties. Molecules (Basel, Switzerland), 25(24), 5811. http://dx.doi.org/10.3390/molecules25245811. PMid:33317120.

33 Papotti, G., Bertelli, D., Plessi, M., & Rossi, M. C. (2010). Use of HR-NMR to classify propolis obtained using different harvesting methods. International Journal of Food Science & Technology, 45(8), 1610-1618. http://dx.doi.org/10.1111/j.1365-2621.2010.02310.x.

34 Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. http://dx.doi.org/10.1002/ptr.687. PMid:11268111.

35 Embrapa Agroindústria Tropical (2007). Comunicado técnico n. 128. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS°+. Fortaleza: Embrapa.

36 Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493. PMid:5325707.

37 Taylor, R. F., & Schultz, J. S., editors (1996). Handbook of chemical and biological sensors. USA: CRC Press. http://dx.doi.org/10.1887/0750303239.

38 Kamel, S., Ali, N., Jahangir, K., Shah, S. M., & El-Gendy, A. A. (2008). Pharmaceutical significance of cellulose: a review. Express Polymer Letters, 2(11), 758-778. http://dx.doi.org/10.3144/expresspolymlett.2008.90.

39 Ghorpade, V. S., Yadav, A. V., & Dias, R. J. (2017). Citric acid crosslinked β -cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydrate Polymers, 164, 339-348. http://dx.doi.org/10.1016/j.carbpol.2017.02.005. PMid:28325334.

40 Capanema, N. S. V., Mansur, A. A. P., Jesus, A. C., Carvalho, S. M., Oliveira, L. C., & Mansur, H. S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218-1234. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.124. PMid:28851645.

41 Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal, 43(3), 773-781. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.030.

42 Brasil. Ministério da Saúde. Resolução-Re nº 90. (2003, May 29). Guia para ensaios de dissolução para Formas Farmacêuticas Sólidas Orais de Liberação Imediata (FFSOLI). Biblioteca Virtual em Saúde. Retrieved in 2023, February 05, from https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0901_29_05_2003.html.

43 Brasil. Ministério da Agricultura e do Abastecimento. Instrução Normativa nº3. (2001, January 19). Diario Oficial da União, Brasília. Retrieved in 2023, February 05, from https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=23/01/2001&jornal=1&pagina=46&totalArquivos=56.

44 Kurek-Górecka, A., Keskin, Ş., Bobis, O., Felitti, R., Górecki, M., Otręba, M., Stojko, J., Olczyk, P., Kolayli, S., & Rzepecka-Stojko, A. (2022). Comparison of the antioxidant activity of propolis samples from different geographical regions. Plants, 11(9), 1203. http://dx.doi.org/10.3390/plants11091203. PMid:35567206.

45 González-Montiel, L., Figueira, A. C., Medina-Pérez, G., Fernández-Luqueño, F., Aguirre-Álvarez, G., Pérez-Soto, E., Pérez-Ríos, S., & Campos-Montiel, R. G. (2022). Bioactive compounds, antioxidant and antimicrobial activity of propolis extracts during in vitro digestion. Applied Sciences (Basel, Switzerland), 12(15), 7892. http://dx.doi.org/10.3390/app12157892.

46 Sousa, J. P. L. M., Pires, L. O., Prudêncio, E. R., Santos, R. F., Sant’Ana, L. D., Ferreira, D. A. S., & Castro, R. N. (2019). Chemical and antimicrobial potential study of Brazilian propolis produced by different species of bees. Revista Virtual de Química, 11(5), 1480-1497. http://dx.doi.org/10.21577/1984-6835.20190103.

47 Muzzolon, A., Bicudo, Á. J. A., Oldoni, T. L. C., & Sado, R. Y. (2021). Dietary brown propolis extract modulated nonspecific immune system and intestinal morphology of Pacu Piaractus mesopotamicus. Brazilian Archives of Biology and Technology, 64, e21200787. http://dx.doi.org/10.1590/1678-4324-2021200787.

48 Castro, R. N., & Salgueiro, F. B. (2016). Comparação entre a composição química e capacidade antioxidante de diferentes extratos de própolis verde. Quimica Nova, 39(10), 1192-1199. http://dx.doi.org/10.21577/0100-4042.20160136.

49 Funari, C. S., Ferro, V. O., & Mathor, M. B. (2007). Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts. Journal of Ethnopharmacology, 111(2), 206-212. http://dx.doi.org/10.1016/j.jep.2006.11.032. PMid:17207952.

50 Ramanauskienė, K., Savickas, A., Inkėnienė, A., Vitkevičius, K., Kasparavičienė, G., Briedis, V., & Amšiejus, A. (2009). Analysis of content of phenolic acids in Lithuanian propolis using high-performance liquid chromatography technique. Medicina, 45(9), 712-717. http://dx.doi.org/10.3390/medicina45090093. PMid:19834308.

51 Tomazzoli, M. M., Zeggio, A. R. S., Dal Pai Neto, R., Specht, L., Costa, C., Rocha, M., Yunes, R. A., & Maraschin, M. (2020). Botanical source investigation and evaluation of the effect of seasonality on Brazilian propolis from Apis mellifera L. Scientia Agrícola, 77(6), e20180258. http://dx.doi.org/10.1590/1678-992x-2018-0258.

52 Calegari, M. A., Prasniewski, A., Silva, C., Sado, R. Y., Maia, F. M. C., Tonial, L. M. S., & Oldoni, T. L. C. (2017). Propolis from Southwest of Parana produced by selected bees: influence of seasonality and food supplementation on antioxidant activity and phenolic profile. Anais da Academia Brasileira de Ciências, 89(1), 45-55. http://dx.doi.org/10.1590/0001-3765201620160499. PMid:28177054.

53 Chaa, S., Boufadi, M. Y., Keddari, S., Benchaib, A. H., Soubhye, J., Van Antwerpen, P., & Riazi, A. (2019). Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats. Revista Brasileira de Farmacognosia, 29(3), 294-300. http://dx.doi.org/10.1016/j.bjp.2019.01.005.

54 Xu, W., Lu, H., Yuan, Y., Deng, Z., Zheng, L., & Li, H. (2022). The antioxidant and anti-inflammatory effects of flavonoids from propolis via Nrf2 and NF-κB pathways. Foods, 11(16), 2439. http://dx.doi.org/10.3390/foods11162439. PMid:36010439.

55 Lima, A. B. S., Santos, D. O., Almeida, V. V. S., Oliveira, A. C., & Santos, L. S. (2022). Quantificação de constituintes fenólicos de extratos de própolis vermelha de diferentes concentrações por HPLC. Research. Social Development, 11(8), e1111830536. http://dx.doi.org/10.33448/rsd-v11i8.30536.

56 Torres, A. R., Sandjo, L. P., Friedemann, M. T., Tomazzoli, M. M., Maraschin, M., Mello, C. F., & Santos, A. R. S. (2018). Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Brazilian Journal of Medical and Biological Research, 51(6), e7118. http://dx.doi.org/10.1590/1414-431x20187118. PMid:29791598.

57 Sousa, A. K. A. (2018). Atividade antibacteriana do extrato hidroalcoólico da própolis vermelha no semiárido paraibano sobre streptococcus pyogenes. (Master''s Thesis). Campina Grande: Universidade Federal de Campina Grande.

58 Dégi, J., Herman, V., Igna, V., Dégi, D. M., Hulea, A., Muselin, F., & Cristina, R. T. (2022). Antibacterial activity of romanian propolis against Staphylococcus aureus isolated from dogs with superficial pyoderma: in vitro test. Veterinary Sciences, 9(6), 299. http://dx.doi.org/10.3390/vetsci9060299. PMid:35737351.

59 Xiao, Y., Zhao, H., Ma, X., Gu, Z., Wu, X., Zhao, L., Ye, L., & Feng, Z. (2022). Hydrogel dressing containing basic fibroblast growth factor accelerating chronic wound healing in aged mouse model. Molecules (Basel, Switzerland), 27(19), 6361. http://dx.doi.org/10.3390/molecules27196361. PMid:36234898.

60 Berglund, L., Squinca, P., Baş, Y., Zattarin, E., Aili, D., Rakar, J., Junker, J., Starkenberg, A., Diamanti, M., Sivlér, P., Skog, M., & Oksman, K. (2023). Self-assembly of nanocellulose hydrogels mimicking bacterial cellulose for wound dressing applications. Biomacromolecules, 24(5), 2264-2277. http://dx.doi.org/10.1021/acs.biomac.3c00152. PMid:37097826.

61 Hezaveh, H., Muhamad, I. I., Noshadi, I., Shu Fen, L., & Ngadi, N. (2012). Swelling behaviour and controlled drug release from cross-linked κ-carrageenan/NaCMC hydrogel by diffusion mechanism. Journal of Microencapsulation, 29(4), 368-379. http://dx.doi.org/10.3109/02652048.2011.651501. PMid:22309480.

62 Akalin, G. O., & Pulat, M. (2018). Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. Journal of Nanomaterials, 2018, 9676949. http://dx.doi.org/10.1155/2018/9676949.

63 Oliveira, R. N., McGuinness, G. B., Rouze, R., Quilty, B., Cahill, P., Soares, G. D. A., & Thiré, R. M. S. M. (2015). PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science, 132(25), 42129. http://dx.doi.org/10.1002/app.42129.

64 Pereira, I. C. S., Santos, N. R. R., Middea, A., Prudencio, E. R., Luchese, R. H., Moreira, A. P. D., & Oliveira, R. N. (2019). In vitro evaluation of PVA gels loaded with Copaiba Oil and Duotrill®. Polímeros: Ciência e Tecnologia, 29(3), e2019039. http://dx.doi.org/10.1590/0104-1428.03719.

65 Oshiro, J. A. Junior, Shiota, L. M., & Chiavacci, L. A. (2014). Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Matéria (Rio de Janeiro), 19(1), 24-32. http://dx.doi.org/10.1590/S1517-70762014000100005.

66 Alhazmi, H. A. (2019). FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Scientia Pharmaceutica, 87(1), 5. http://dx.doi.org/10.3390/scipharm87010005.

67 Yamakami, S. A., Ubaldini, A. L. M., Sato, F., Medina Neto, A., Pascotto, R. C., & Baesso, M. L. (2018). Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 26(0), e20170384. http://dx.doi.org/10.1590/1678-7757-2017-0384. PMid:30020351.

68 Prasad, C. V., Sudhakar, H., Swamy, B. Y., Reddy, G. V., Reddy, C. L. N., Suryanarayana, C., Prabhakar, M. N., Subha, M. C. S., & Rao, K. C. (2011). Miscibility studies of sodium carboxymethylcellulose/poly(vinyl alcohol) blend membranes for pervaporation dehydration of isopropyl alcohol. Journal of Applied Polymer Science, 120(4), 2271-2281. http://dx.doi.org/10.1002/app.33418.

69 Rajczak, E., Tylkowski, B., Constantí, M., Haponska, M., Trusheva, B., Malucelli, G., & Giamberini, M. (2020). Preparation and characterization of UV-curable acrylic membranes embedding natural antioxidants. Polymers, 12(2), 358. http://dx.doi.org/10.3390/polym12020358. PMid:32041291.

70 Juncu, G., Stoica-Guzun, A., Stroescu, M., Isopencu, G., & Jinga, S. I. (2016). Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. International Journal of Pharmaceutics, 510(2), 485-492. http://dx.doi.org/10.1016/j.ijpharm.2015.11.053. PMid:26688041.

71 Silva, C., Prasniewski, A., Calegari, M. A., Lima, V. A., & Oldoni, T. L. C. (2018). Determination of total phenolic compounds and antioxidant activity of ethanolic extracts of propolis using ATR-FT-IR spectroscopy and chemometrics. Food Analytical Methods, 11(7), 2013-2021. http://dx.doi.org/10.1007/s12161-018-1161-x.

72 Lapa, L. S. S., Silva, Y. R. O., & Sales, P. F. (2020). Aplicação das análises espectroscópicas e termogravimétricas em filmes biodegradáveis de amido de milho incorporados com extrato de própolis-verde. ForScience, 8(2), e00712. http://dx.doi.org/10.29069/forscience.2020v8n2.e712.

73 Freitas, L. H., & Lima, L. S. C. 73. Freitas, L. H., & Lima, L. S. C. (2018). Encapsulação de extrato de própolis utilizando soro de leite. Fortaleza: Instituto Federal de Educação, Ciência e Tecnologia do Ceará - IFC. Retrieved in 2023, February 05, from http://prpi.ifce.edu.br/nl/_lib/file/doc4831-Trabalho/ENCAPSULACAOODEEXTRATODEPROPOLISUTILIZANDOSORODELEITE.pdf.

74 Claudino, G. P. (2011). Estudo fitoquímico-biológico da madeira da espécie Dalbergia glaucescens (Mart. ex Benth.) Benth (Doctoral Dissertation). Campos dos Goytacazes: Universidade Estadual do Norte Fluminense Darcy Ribeiro.

75 Yeasmin, M. S., & Mondal, M. I. H. (2015). Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International Journal of Biological Macromolecules, 80, 725-731. http://dx.doi.org/10.1016/j.ijbiomac.2015.07.040. PMid:26210036.

76 Scatolini, A. M., Pugine, S. M. P., Vercik, L. C. O., Melo, M. P., & Rigo, E. C. S. (2018). Evaluation of the antimicrobial activity and cytotoxic effect of hydroxyapatite containing Brazilian propolis. Biomedical Materials (Bristol, England), 13(2), 025010. http://dx.doi.org/10.1088/1748-605X/aa9a84. PMid:29135460.

77 Oliveira, R. N., Mancini, M. C., de Oliveira, F. C. S., Passos, T. M., Quilty, B., Thiré, R. M. S. M., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21(3), 767-779. http://dx.doi.org/10.1590/S1517-707620160003.0072.

78 Tyliszczak, B., Walczyk, D., & Wilczyński, S. (2015). Acrylic hydrogels modified with bee pollen for biomedical applications. Journal of Applied Pharmaceutical Science, 5(11), 010-014. http://dx.doi.org/10.7324/JAPS.2015.501102.

79 Nascimento, T. G., Silva, P. F., Azevedo, L. F., Rocha, L. G., Porto, I. C. C. M., Moura, T. F. A. L., Basílio-Júnior, I. D., Grillo, L. A. M., Dornelas, C. B., Fonseca, E. J. S., Oliveira, E. J., Zhang, A. T., & Watson, D. G. (2016). Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity. Nanoscale Research Letters, 11(1), 301. http://dx.doi.org/10.1186/s11671-016-1517-3. PMid:27316742.

80 Salmazo, P. S. (2019). Biorremediação de solo e água contaminados por solventes aromáticos provenientes de combustíveis. (Master's Thesis). Sorocaba: Universidade de Sorocaba.

81 Nasdala, L., Smith, D. C., Kaindl, R., & Ziemann, M. A. (2004). Raman spectroscopy. In A. Beran, & E. Libowitzky (Eds.), Spectroscopic methods in mineralogy (pp. 281-343). McLean: Mineralogical Society of Great Britain and Ireland. http://dx.doi.org/10.1180/EMU-notes.6.7.

82 Trilokesh, C., & Uppuluri, K. B. (2019). Isolation and characterization of cellulose nanocrystals from jackfruit peel. Scientific Reports, 9(1), 16709. http://dx.doi.org/10.1038/s41598-019-53412-x. PMid:31723189.

83 Shetty, S. K., Ismayil, Hegde, S., Ravindrachary, V., Sanjeev, G., Bhajantri, R. F., & Masti, S. P. (2021). Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrolyte films. Ionics, 27(6), 2509-2525. http://dx.doi.org/10.1007/s11581-021-04023-y.

84 Bokuniaeva, A. O., & Vorokh, A. S. (2019). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO 2 powder. In J, 6th International School and Conference "Saint Petersburg OPEN 2019": Optoelectronics, Photonics, Engineering and Nanostructures (012057). Moscow: Journal of Physics: Conference Series.

85 Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. http://dx.doi.org/10.1016/j.biortech.2011.11.122. PMid:22306076.

86 Mohkami, M., & Talaeipour, M. (2011). Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via Xrd and Ftir analysis. BioResources, 6(2), 1988-2003. http://dx.doi.org/10.15376/biores.6.2.1988-2003.

87 Ahmad, N., Wahab, R., & Al-Omar, S. Y. (2014). Thermal decomposition kinetics of sodium carboxymethyl cellulose: model‐free methods. European Journal of Chemistry, 5(2), 247-251. http://dx.doi.org/10.5155/eurjchem.5.2.247-251.971.

88 Lee, J. Y., Im, J. N., Kim, T. H., Chung, D. J., & Doh, S. J. (2015). Structure and liquid handling properties of water-insoluble carboxymethyl cellulose foam. Fibers and Polymers, 16(4), 726-734. http://dx.doi.org/10.1007/s12221-015-0726-1.

89 El-Sayed, S., Mahmoud, K. H., Fatah, A. A., & Hassen, A. (2011). DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B, Condensed Matter, 406(21), 4068-4076. http://dx.doi.org/10.1016/j.physb.2011.07.050.

90 Badry, R., Ezzat, H. A., El-Khodary, S., Morsy, M., Elhaes, H., Nada, N., & Ibrahim, M. (2021). Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. Journal of Molecular Structure, 1224, 129013. http://dx.doi.org/10.1016/j.molstruc.2020.129013.

91 Yaradoddi, J. S., Banapurmath, N. R., Ganachari, S. V., Soudagar, M. E. M., Mubarak, N. M., Hallad, S., Hugar, S., & Fayaz, H. (2020). Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Scientific Reports, 10(1), 21960. http://dx.doi.org/10.1038/s41598-020-78912-z. PMid:33319818.

92 Seki, Y., Altinisik, A., Demircioğlu, B., & Tetik, C. (2014). Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose (London, England), 21(3), 1689-1698. http://dx.doi.org/10.1007/s10570-014-0204-8.

93 Tabari, M. (2017). Investigation of Carboxymethyl Cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41. http://dx.doi.org/10.3390/foods6060041. PMid:28555025.

94 Lan, W., He, L., & Liu, Y. (2018). Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings, 8(8), 291. http://dx.doi.org/10.3390/coatings8080291.

95 Laurano, R., Boffito, M., Ciardelli, G., & Chiono, V. (2022). Wound dressing products: a translational investigation from the bench to the market. Engineered Regeneration, 3(2), 182-200. http://dx.doi.org/10.1016/j.engreg.2022.04.002.

96 Hassan, S., Ali, M. N., Mir, M., Ahmed, A., & Arshad, M. (2021). Development and evaluation of drug delivery patch for topical wound healing application. SN Applied Sciences, 3(10), 825. http://dx.doi.org/10.1007/s42452-021-04809-9.

97 Miranda-Calderon, L., Yus, C., Landa, G., Mendoza, G., Arruebo, M., & Irusta, S. (2022). Pharmacokinetic control on the release of antimicrobial drugs from pH-responsive electrospun wound dressings. International Journal of Pharmaceutics, 624, 122003. http://dx.doi.org/10.1016/j.ijpharm.2022.122003. PMid:35811042.

98 Basílio, J. A. D. (2018). Desenvolvimento e avaliação in vitro da atividade cicatrizante de membranas poliméricas incorporadas com própolis vermelha (Doctoral Dissertation). Maceió: Universidade Federal de Alagoas.

99 Brasil. Ministério da Saúde. Resolução-RDC nº 31. (2010, August 11 ). Dispõe sobre a realização dos Estudos de Equivalência Farmacêutica e de Perfil de Dissolução Comparativo. Biblioteca Virtual em Saúde. Retrieved in 2023, February 05, from http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0031_11_08_2010.html.

100 Rozo, G., Bohorques, L., & Santamaría, J. (2019). Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel. Polímeros: Ciência e Tecnologia, 29(3), e2019033. http://dx.doi.org/10.1590/0104-1428.02719.

101 Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2), 169-172. http://dx.doi.org/10.1016/0378-5173(89)90306-2.

102 Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. http://dx.doi.org/10.1016/0168-3659(87)90034-4.

103 Chaiya, P., Rojviriya, C., Pichayakorn, W., & Phaechamud, T. (2022). New Insight into the Impact of Effervescence on Gel Layer Microstructure and Drug Release of Effervescent Matrices Using Combined Mechanical and Imaging Characterisation Techniques. Pharmaceutics, 14(11), 2299. http://dx.doi.org/10.3390/pharmaceutics14112299. PMid:36365118.

104 Trucillo, P. (2022). Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes (Basel, Switzerland), 10(6), 1094. http://dx.doi.org/10.3390/pr10061094.

105 Altun, E., Yuca, E., Ekren, N., Kalaskar, D. M., Ficai, D., Dolete, G., Ficai, A., & Gunduz, O. (2021). Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics, 13(5), 613. http://dx.doi.org/10.3390/pharmaceutics13050613. PMid:33922739.

106 Liu, F., Wang, Z., Guo, H., Li, H., Chen, Y., & Guan, S. (2023). A Double-Layer Hydrogel Dressing with High Mechanical Strength and Water Resistance Used for Drug Delivery. Molecules (Basel, Switzerland), 28(2), 499. http://dx.doi.org/10.3390/molecules28020499. PMid:36677557.
 

64f72475a95395541d3b8ed3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections